scholarly journals An Automated Approach for Sub-Pixel Registration of Landsat-8 Operational Land Imager (OLI) and Sentinel-2 Multi Spectral Instrument (MSI) Imagery

2016 ◽  
Vol 8 (6) ◽  
pp. 520 ◽  
Author(s):  
Lin Yan ◽  
David Roy ◽  
Hankui Zhang ◽  
Jian Li ◽  
Haiyan Huang
2020 ◽  
Vol 12 (23) ◽  
pp. 3958
Author(s):  
Parwati Sofan ◽  
David Bruce ◽  
Eriita Jones ◽  
M. Rokhis Khomarudin ◽  
Orbita Roswintiarti

This study establishes a new technique for peatland fire detection in tropical environments using Landsat-8 and Sentinel-2. The Tropical Peatland Combustion Algorithm (ToPeCAl) without longwave thermal infrared (TIR) (henceforth known as ToPeCAl-2) was tested on Landsat-8 Operational Land Imager (OLI) data and then applied to Sentinel-2 Multi Spectral Instrument (MSI) data. The research is aimed at establishing peatland fire information at higher spatial resolution and more frequent observation than from Landsat-8 data over Indonesia’s peatlands. ToPeCAl-2 applied to Sentinel-2 was assessed by comparing fires detected from the original ToPeCAl applied to Landsat-8 OLI/Thermal Infrared Sensor (TIRS) verified through comparison with ground truth data. An adjustment of ToPeCAl-2 was applied to minimise false positive errors by implementing pre-process masking for water and permanent bright objects and filtering ToPeCAl-2’s resultant detected fires by implementing contextual testing and cloud masking. Both ToPeCAl-2 with contextual test and ToPeCAl with cloud mask applied to Sentinel-2 provided high detection of unambiguous fire pixels (>95%) at 20 m spatial resolution. Smouldering pixels were less likely to be detected by ToPeCAl-2. The detected smouldering pixels from ToPeCAl-2 applied to Sentinel-2 with contextual testing and with cloud masking were only 35% and 56% correct, respectively; this needs further investigation and validation. These results demonstrate that even in the absence of TIR data, an adjusted ToPeCAl algorithm (ToPeCAl-2) can be applied to detect peatland fires at 20 m resolution with high accuracy especially for flaming. Overall, the implementation of ToPeCAl applied to cost-free and available Landsat-8 and Sentinel-2 data enables regular peatland fire monitoring in tropical environments at higher spatial resolution than other satellite-derived fire products.


2021 ◽  
Author(s):  
Ειρήνη Χρυσάφη

Τα μεσογειακά δάση χαρακτηρίζονται από υψηλή χωροχρονική ετερογένεια και αποτελούν ένα από σημαντικότερα σημεία της βιοποικιλότητας στον πλανήτη. Η σημαντική αξία τους και το ευρύ φάσμα των οικοσυστημικών υπηρεσιών που παρέχουν, αναγνωρίζεται ευρέως από επιστήμονες, διεθνείς συμβάσεις και οργανισμούς. Ωστόσο, η ευπάθεια τους σε ανθρώπινες και φυσικές απειλές έχει ως αποτέλεσμα την διατάραξη τους. Συνεπώς, σχέδια βιώσιμης διαχείρισης και αειφορικής ανάπτυξης καθίστανται ως επιτακτική ανάγκη. Οι πρακτικές παρακολούθησης και απογραφής δασών απαιτούν την αξιόπιστη εκτίμηση δασικών παραμέτρων, όπως η κυκλική επιφάνεια, ο αριθμός δέντρων ανά μονάδα επιφάνειας και ξυλώδες όγκου. Η ετερογένεια των μεσογειακών δασών και η δύσκολη πρόσβασής τους, καθιστά την επιστήμη της τηλεπισκόπησης ως εξαιρετικά χρήσιμο μέσο για την αξιολόγηση των δασικών πόρων. Η τεχνολογία της τηλεπισκόπησης και τα ανοιχτά δεδομένα τηλεπισκόπησης παρέχουν μεγάλες δυνατότητες στον τομέα της δασολογίας και στην δασική απογραφή. Επιπλέον, η ταχεία πρόοδος στους αλγόριθμους τεχνητής νοημοσύνης διευκολύνει την ανάλυση ευρέος φάσματος δεδομένων. Σε αυτό το πλαίσιο, ο συνδυασμός αυτών των ισχυρών εργαλείων (δεδομένα τηλεπισκόπησης και προσεγγίσεις μηχανικής μάθησης) συνιστά μια πολλά υποσχόμενη, αλλά και ερευνητική πρόκληση, για την εκτίμηση δασικών παραμέτρων. Στη παρούσα διατριβή, εξετάζονται διάφορες προσεγγίσεις για την βελτιστοποίηση της εκτίμησης δασικών παραμέτρων με την χρήση δορυφορικών εικόνων και τεχνικών μηχανικής μάθησης.Η δομή της παρούσας διατριβής αποτελείται από τρία μέρη. Το πρώτο μέρος αποτελείται από τέσσερα κεφάλαια. Αρχικά, στο Κεφάλαιο 1, γίνεται μια εισαγωγή στην αξία των μεσογειακών δασών, στις υπηρεσίες που παρέχουν και στις απειλές που αντιμετωπίζουν. Το Κεφάλαιο 2 τονίζει την ανάγκη αειφορικής διαχείρισης των δασών και κατ 'επέκταση της απογραφής και αξιόπιστης εκτίμησης δασικών παραμέτρων. Στο Κεφάλαιο 3, παρουσιάζονται εν συντομία πηγές δεδομένων τηλεπισκόπησης και η συμβολή τους σε δασικές εφαρμογές και ιδιαίτερα στην εκτίμηση δασικών παραμέτρων, σε περιοχές της Μεσογείου. Το κεφάλαιο 4, αποτελεί μια εισαγωγή στους αλγόριθμους τεχνητής νοημοσύνης και μηχανικής μάθησης και πώς αυτές οι προσεγγίσεις εφαρμόζονται στον τομέα της τηλεπισκόπησης και της δασολογίας. Τέλος παρουσιάζονται τα ερευνητικά ερωτήματα και τα αντικείμενα της παρούσας διατριβής. Το δεύτερο μέρος αποτελείται από τέσσερα άρθρα, εκ των οποίων, το πρώτο (Κεφάλαιο 7) έχει δημοσιευτεί στο περιοδικό Remote Sensing of Environment (2017) και αφορά την εκτίμηση δασικών παραμέτρων χρησιμοποιώντας δια-εποχιακές εικόνες Landsat 8 Operational Land Imager. Το δεύτερο άρθρο (Κεφάλαιο 8) έχει δημοσιευτεί στο Remote Sensing Letters (2017) και αφορά τις σχέσεις μεταξύ ξυλώδες όγκου και εικόνων Sentinel-2 Multi Spectral Instrument. Το τρίτο άρθρο (Κεφάλαιο 9) έχει δημοσιευτεί στο περιοδικό International Journal of Applied Earth Observation and Geoinformation (2019) και αφορά την αξιολόγηση των δορυφορικών δεδομένων Sentinel-2 Multi Spectral Instrument για την εκτίμηση του ξυλώδες όγκου. Το τελευταίο άρθρο (Κεφάλαιο 10) που προορίζεται προς δημοσίευση, αποτελεί μια προκαταρκτική μελέτη για την εκτίμηση του ξυλώδες όγκου σε ένα μεσογειακό δασικό οικοσύστημα, με μία μετά-μαθησιακή προσέγγιση και την ανάπτυξη ενός μοντέλου συσσωρευμένης γενίκευσης (stacked generalization). Τέλος, στο τρίτο μέρος της παρούσας διατριβής παρουσιάζονται συνοπτικά οι απαντήσεις των ερωτημάτων που τέθηκαν στην παρούσα διατριβή και τα προβλήματα - περιορισμοί που αντιμετωπίστηκαν. Επίσης, προτείνονται δυνατότητες και προοπτικές εξέλιξης της παρούσας έρευνας, που θα μπορούσε να αποτελέσουν αντικείμενο για μελλοντική έρευνα.


2016 ◽  
Vol 186 ◽  
pp. 121-122 ◽  
Author(s):  
James Storey ◽  
David P. Roy ◽  
Jeffrey Masek ◽  
Ferran Gascon ◽  
John Dwyer ◽  
...  

2021 ◽  
Vol 13 (8) ◽  
pp. 1509
Author(s):  
Xikun Hu ◽  
Yifang Ban ◽  
Andrea Nascetti

Accurate burned area information is needed to assess the impacts of wildfires on people, communities, and natural ecosystems. Various burned area detection methods have been developed using satellite remote sensing measurements with wide coverage and frequent revisits. Our study aims to expound on the capability of deep learning (DL) models for automatically mapping burned areas from uni-temporal multispectral imagery. Specifically, several semantic segmentation network architectures, i.e., U-Net, HRNet, Fast-SCNN, and DeepLabv3+, and machine learning (ML) algorithms were applied to Sentinel-2 imagery and Landsat-8 imagery in three wildfire sites in two different local climate zones. The validation results show that the DL algorithms outperform the ML methods in two of the three cases with the compact burned scars, while ML methods seem to be more suitable for mapping dispersed burn in boreal forests. Using Sentinel-2 images, U-Net and HRNet exhibit comparatively identical performance with higher kappa (around 0.9) in one heterogeneous Mediterranean fire site in Greece; Fast-SCNN performs better than others with kappa over 0.79 in one compact boreal forest fire with various burn severity in Sweden. Furthermore, directly transferring the trained models to corresponding Landsat-8 data, HRNet dominates in the three test sites among DL models and can preserve the high accuracy. The results demonstrated that DL models can make full use of contextual information and capture spatial details in multiple scales from fire-sensitive spectral bands to map burned areas. Using only a post-fire image, the DL methods not only provide automatic, accurate, and bias-free large-scale mapping option with cross-sensor applicability, but also have potential to be used for onboard processing in the next Earth observation satellites.


Agronomy ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 846
Author(s):  
Mbulisi Sibanda ◽  
Onisimo Mutanga ◽  
Timothy Dube ◽  
John Odindi ◽  
Paramu L. Mafongoya

Considering the high maize yield loses caused by incidences of disease, as well as incomprehensive monitoring initiatives in crop farming, there is a need for spatially explicit, cost-effective, and consistent approaches for monitoring, as well as for forecasting, food-crop diseases, such as maize Gray Leaf Spot. Such approaches are valuable in reducing the associated economic losses while fostering food security. In this study, we sought to investigate the utility of the forthcoming HyspIRI sensor in detecting disease progression of Maize Gray Leaf Spot infestation in relation to the Sentinel-2 MSI and Landsat 8 OLI spectral configurations simulated using proximally sensed data. Healthy, intermediate, and severe categories of maize crop infections by the Gray Leaf Spot disease were discriminated based on partial least squares–discriminant analysis (PLS-DA) algorithm. Comparatively, the results show that the HyspIRI’s simulated spectral settings slightly performed better than those of Sentinel-2 MSI, VENµS, and Landsat 8 OLI sensor. HyspIRI exhibited an overall accuracy of 0.98 compared to 0.95, 0.93, and 0.89, which were exhibited by Sentinel-2 MSI, VENµS, and Landsat 8 OLI sensor sensors, respectively. Furthermore, the results showed that the visible section, red-edge, and NIR covered by all the four sensors were the most influential spectral regions for discriminating different Maize Gray Leaf Spot infections. These findings underscore the potential value of the upcoming hyperspectral HyspIRI sensor in precision agriculture and forecasting of crop-disease epidemics, which are necessary to ensure food security.


2020 ◽  
Vol 12 (11) ◽  
pp. 1876 ◽  
Author(s):  
Katsuto Shimizu ◽  
Tetsuji Ota ◽  
Nobuya Mizoue ◽  
Hideki Saito

Developing accurate methods for estimating forest structures is essential for efficient forest management. The high spatial and temporal resolution data acquired by CubeSat satellites have desirable characteristics for mapping large-scale forest structural attributes. However, most studies have used a median composite or single image for analyses. The multi-temporal use of CubeSat data may improve prediction accuracy. This study evaluates the capabilities of PlanetScope CubeSat data to estimate canopy height derived from airborne Light Detection and Ranging (LiDAR) by comparing estimates using Sentinel-2 and Landsat 8 data. Random forest (RF) models using a single composite, multi-seasonal composites, and time-series data were investigated at different spatial resolutions of 3, 10, 20, and 30 m. The highest prediction accuracy was obtained by the PlanetScope multi-seasonal composites at 3 m (relative root mean squared error: 51.3%) and Sentinel-2 multi-seasonal composites at the other spatial resolutions (40.5%, 35.2%, and 34.2% for 10, 20, and 30 m, respectively). The results show that RF models using multi-seasonal composites are 1.4% more accurate than those using harmonic metrics from time-series data in the median. PlanetScope is recommended for canopy height mapping at finer spatial resolutions. However, the unique characteristics of PlanetScope data in a spatial and temporal context should be further investigated for operational forest monitoring.


2021 ◽  
Vol 54 (1) ◽  
pp. 182-208
Author(s):  
Sani M. Isa ◽  
Suharjito ◽  
Gede Putera Kusuma ◽  
Tjeng Wawan Cenggoro
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document