scholarly journals A Satellite-Based Sunshine Duration Climate Data Record for Europe and Africa

2017 ◽  
Vol 9 (5) ◽  
pp. 429 ◽  
Author(s):  
◽  
◽  
◽  
◽  
2021 ◽  
Author(s):  
Jaqueline Drücke ◽  
Uwe Pfeifroth ◽  
Jörg Trentmann ◽  
Rainer Hollmann

<p>Sunshine Duration (SDU) is an important parameter in climate monitoring (e.g., due to the availability of long term measurements) and weather application. The exceptional sunny years in Europe since 2018 have raised also the attention of the general public towards this parameter.</p><p>The definition of SDU by WMO via the threshold of 120 W/m<sup>2</sup> for the Direct Normal Irradiance (DNI) allows the estimation of sunshine duration from satellite-derived surface irradiance data. Sunshine duration is part of the climate data record (CDR) “Surface Solar Radiation data set – Heliosat” (SARAH-2.1, doi: 10.5676/EUM_SAF_CM/SARAH/V002_01) by EUMETSAT Satellite Application Facility on Climate Monitoring (CM SAF), which is based on observations from the series of Meteosat satellites. The provided temporal resolutions are daily and monthly sums with a grid space of 0.05°; the data are available from 1983 to 2017 at www.cmsaf.eu. This climate data record is temporally extended by the so-called SARAH-ICDR (Interim Climate Data record) with an average timeliness of 3 days to allow climate monitoring. An updated, improved, and extended version of the SARAH-2.1 CDR is currently being developed and will be made available in early 2022. The SARAH-3 CDR of sunshine duration, covering 1983 to 2020, will be improved compared to the current version, in particular during situations with snow-covered surfaces.</p><p>Here, the algorithm, improvements compared to SARAH-2.1 and a first validation will be presented for sunshine duration, especially for Germany and Europe. The validation is based on station data from Climate Data Center (CDC) for Germany and European Climate Assessment & Dataset (ECA&D) for Europe.</p>


2021 ◽  
Author(s):  
Uwe Pfeifroth ◽  
Jaqueline Drücke ◽  
Jörg Trentmann ◽  
Rainer Hollmann

<p>The EUMETSAT Satellite Application Facility on Climate Monitoring (CM SAF) generates and distributes high quality long-term climate data records (CDR) of energy and water cycle parameters, which are freely available.</p><p>In fall 2021, a new version of the “Surface Solar Radiation data set – Heliosat” will be released: SARAH-3. As the previous editions, the SARAH-3 climate data record is based on satellite observations from the first and second METEOSAT generations and provides various surface radiation parameters, including global radiation, direct radiation, sunshine duration, photosynthetic active radiation and others. SARAH-3 covers the time period 1983 to 2020 and offers 30-minute instantaneous data as well as daily and monthly means on a regular 0.05° x 0.05° lon/lat grid.</p><p>In this presentation, an overview of the SARAH climate data record and their applications will be provided. A focus will be on the SARAH-3 developments and improvements (i.e. improved consideration of snow-covered surfaces). First validation results of the new Climate Data Record using surface reference observations will be presented. Further, SARAH-3 will be used for the analysis of the climate variability in Europe during the last decades.</p><p>. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .</p>


2021 ◽  
Author(s):  
Uwe Pfeifroth ◽  
Jaqueline Drücke ◽  
Jörg Trentmann ◽  
Rainer Hollmann

<p class="western"><span lang="en-US">The EUMETSAT Satellite Application Facility on Climate Monitoring (CM SAF) generates and distributes high quality long-term climate data records (CDR) of energy and water cycle parameters, which are freely available.</span></p> <p class="western"><span lang="en-US">In 2022, a new version of the “Surface Solar Radiation data set – Heliosat” will be released: SARAH-3. As the previous editions, the SARAH-3 climate data record is based on satellite observations from the first and second METEOSAT generations and provides various surface radiation parameters, including global radiation, direct radiation, sunshine duration, photosynthetic active radiation and others. SARAH-3 covers the time period 1983 to 2020 and offers 30-minute instantaneous data as well as daily and monthly means on a regular 0.05° x 0.05° lon/lat grid.</span></p> <p class="western" align="left"><span lang="en-US">In this presentation, an overview of the SARAH climate data record and their applications will be given. A focus will be on the SARAH-3 developments and validation with surface reference observations. Further, SARAH-3 will be used for a first analysis of the climate variability and potential trends of global radiation in Europe during the last decades. </span><span lang="en-US">The data record reveals that there is an increasing trend of surface solar radiation in Europe during the last decades, which is superimposed by decadal and regional variability.</span></p>


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Mojtaba Sadeghi ◽  
Phu Nguyen ◽  
Matin Rahnamay Naeini ◽  
Kuolin Hsu ◽  
Dan Braithwaite ◽  
...  

AbstractAccurate long-term global precipitation estimates, especially for heavy precipitation rates, at fine spatial and temporal resolutions is vital for a wide variety of climatological studies. Most of the available operational precipitation estimation datasets provide either high spatial resolution with short-term duration estimates or lower spatial resolution with long-term duration estimates. Furthermore, previous research has stressed that most of the available satellite-based precipitation products show poor performance for capturing extreme events at high temporal resolution. Therefore, there is a need for a precipitation product that reliably detects heavy precipitation rates with fine spatiotemporal resolution and a longer period of record. Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Cloud Classification System-Climate Data Record (PERSIANN-CCS-CDR) is designed to address these limitations. This dataset provides precipitation estimates at 0.04° spatial and 3-hourly temporal resolutions from 1983 to present over the global domain of 60°S to 60°N. Evaluations of PERSIANN-CCS-CDR and PERSIANN-CDR against gauge and radar observations show the better performance of PERSIANN-CCS-CDR in representing the spatiotemporal resolution, magnitude, and spatial distribution patterns of precipitation, especially for extreme events.


2021 ◽  
Vol 13 (9) ◽  
pp. 1701
Author(s):  
Leonardo Bagaglini ◽  
Paolo Sanò ◽  
Daniele Casella ◽  
Elsa Cattani ◽  
Giulia Panegrossi

This paper describes the Passive microwave Neural network Precipitation Retrieval algorithm for climate applications (PNPR-CLIM), developed with funding from the Copernicus Climate Change Service (C3S), implemented by ECMWF on behalf of the European Union. The algorithm has been designed and developed to exploit the two cross-track scanning microwave radiometers, AMSU-B and MHS, towards the creation of a long-term (2000–2017) global precipitation climate data record (CDR) for the ECMWF Climate Data Store (CDS). The algorithm has been trained on an observational dataset built from one year of MHS and GPM-CO Dual-frequency Precipitation Radar (DPR) coincident observations. The dataset includes the Fundamental Climate Data Record (FCDR) of AMSU-B and MHS brightness temperatures, provided by the Fidelity and Uncertainty in Climate data records from Earth Observation (FIDUCEO) project, and the DPR-based surface precipitation rate estimates used as reference. The combined use of high quality, calibrated and harmonized long-term input data (provided by the FIDUCEO microwave brightness temperature Fundamental Climate Data Record) with the exploitation of the potential of neural networks (ability to learn and generalize) has made it possible to limit the use of ancillary model-derived environmental variables, thus reducing the model uncertainties’ influence on the PNPR-CLIM, which could compromise the accuracy of the estimates. The PNPR-CLIM estimated precipitation distribution is in good agreement with independent DPR-based estimates. A multiscale assessment of the algorithm’s performance is presented against high quality regional ground-based radar products and global precipitation datasets. The regional and global three-year (2015–2017) verification analysis shows that, despite the simplicity of the algorithm in terms of input variables and processing performance, the quality of PNPR-CLIM outperforms NASA GPROF in terms of rainfall detection, while in terms of rainfall quantification they are comparable. The global analysis evidences weaknesses at higher latitudes and in the winter at mid latitudes, mainly linked to the poorer quality of the precipitation retrieval in cold/dry conditions.


2017 ◽  
Vol 17 (9) ◽  
pp. 5809-5828 ◽  
Author(s):  
Karl-Göran Karlsson ◽  
Kati Anttila ◽  
Jörg Trentmann ◽  
Martin Stengel ◽  
Jan Fokke Meirink ◽  
...  

Abstract. The second edition of the satellite-derived climate data record CLARA (The CM SAF Cloud, Albedo And Surface Radiation dataset from AVHRR data – second edition denoted as CLARA-A2) is described. The data record covers the 34-year period from 1982 until 2015 and consists of cloud, surface albedo and surface radiation budget products derived from the AVHRR (Advanced Very High Resolution Radiometer) sensor carried by polar-orbiting, operational meteorological satellites. The data record is produced by the EUMETSAT Climate Monitoring Satellite Application Facility (CM SAF) project as part of the operational ground segment. Its upgraded content and methodology improvements since edition 1 are described in detail, as are some major validation results. Some of the main improvements to the data record come from a major effort in cleaning and homogenizing the basic AVHRR level-1 radiance record and a systematic use of CALIPSO-CALIOP cloud information for development and validation purposes. Examples of applications studying decadal changes in Arctic summer surface albedo and cloud conditions are provided.


2021 ◽  
Author(s):  
Kerry Meyer ◽  
Steven Platnick ◽  
Robert Holz ◽  
Steven Ackerman ◽  
Andrew Heidinger ◽  
...  

<p>The Suomi NPP and JPSS series VIIRS imagers provide an opportunity to extend the NASA EOS Terra (20+ year) and Aqua (18+ year) MODIS cloud climate data record into the new generation NOAA operational weather satellite era. However, while building a consistent, long-term cloud data record has proven challenging for the two MODIS sensors alone, the transition to VIIRS presents additional challenges due to its lack of key water vapor and CO<sub>2</sub> absorbing channels available on MODIS that are used for high cloud detection and cloud-top property retrievals, and a mismatch in the spectral location of the 2.2µm shortwave infrared channels on MODIS and VIIRS that has important implications on inter-sensor consistency of cloud optical/microphysical property retrievals and cloud thermodynamic phase. Moreover, sampling differences between MODIS and VIIRS, including spatial resolution and local observation time, and inter-sensor relative radiometric calibration pose additional challenges. To create a continuous, long-term cloud climate data record that merges the observational records of MODIS and VIIRS while mitigating the impacts of these sensor differences, a common algorithm approach was pursued that utilizes a subset of spectral channels available on each imager. The resulting NASA CLDMSK (cloud mask) and CLDPROP (cloud-top and optical/microphysical properties) products were publicly released for Aqua MODIS and SNPP VIIRS in early 2020, with NOAA-20 (JPSS-1) VIIRS following in early 2021. Here, we present an overview of the MODIS-VIIRS CLDMSK and CLDPROP common algorithm approach, discuss efforts to monitor and address relative radiometric calibration differences, and highlight early analysis of inter-sensor cloud product dataset continuity.</p>


2018 ◽  
Vol 10 (10) ◽  
pp. 1640 ◽  
Author(s):  
Ralph Ferraro ◽  
Brian Nelson ◽  
Tom Smith ◽  
Olivier Prat

Passive microwave measurements have been available on satellites back to the 1970s, first flown on research satellites developed by the National Aeronautics and Space Administration (NASA). Since then, several other sensors have been flown to retrieve hydrological products for both operational weather applications (e.g., the Special Sensor Microwave/Imager—SSM/I; the Advanced Microwave Sounding Unit—AMSU) and climate applications (e.g., the Advanced Microwave Scanning Radiometer—AMSR; the Tropical Rainfall Measurement Mission Microwave Imager—TMI; the Global Precipitation Mission Microwave Imager—GMI). Here, the focus is on measurements from the AMSU-A, AMSU-B, and Microwave Humidity Sounder (MHS). These sensors have been in operation since 1998, with the launch of NOAA-15, and are also on board NOAA-16, -17, -18, -19, and the MetOp-A and -B satellites. A data set called the “Hydrological Bundle” is a climate data record (CDR) that utilizes brightness temperatures from fundamental CDRs (FCDRs) to generate thematic CDRs (TCDRs). The TCDRs include total precipitable water (TPW), cloud liquid water (CLW), sea-ice concentration (SIC), land surface temperature (LST), land surface emissivity (LSE) for 23, 31, 50 GHz, rain rate (RR), snow cover (SC), ice water path (IWP), and snow water equivalent (SWE). The TCDRs are shown to be in general good agreement with similar products from other sources, such as the Global Precipitation Climatology Project (GPCP) and the Modern-Era Retrospective Analysis for Research and Applications (MERRA-2). Due to the careful intercalibration of the FCDRs, little bias is found among the different TCDRs produced from individual NOAA and MetOp satellites, except for normal diurnal cycle differences.


2020 ◽  
Vol 12 (16) ◽  
pp. 2554
Author(s):  
Christopher J. Merchant ◽  
Owen Embury

Atmospheric desert-dust aerosol, primarily from north Africa, causes negative biases in remotely sensed climate data records of sea surface temperature (SST). Here, large-scale bias adjustments are deduced and applied to the v2 climate data record of SST from the European Space Agency Climate Change Initiative (CCI). Unlike SST from infrared sensors, SST measured in situ is not prone to desert-dust bias. An in-situ-based SST analysis is combined with column dust mass from the Modern-Era Retrospective analysis for Research and Applications, Version 2 to deduce a monthly, large-scale adjustment to CCI analysis SSTs. Having reduced the dust-related biases, a further correction for some periods of anomalous satellite calibration is also derived. The corrections will increase the usability of the v2 CCI SST record for oceanographic and climate applications, such as understanding the role of Arabian Sea SSTs in the Indian monsoon. The corrections will also pave the way for a v3 climate data record with improved error characteristics with respect to atmospheric dust aerosol.


Sign in / Sign up

Export Citation Format

Share Document