scholarly journals A Multi-Fault Diagnosis Method for Sensor Systems Based on Principle Component Analysis

Sensors ◽  
2009 ◽  
Vol 10 (1) ◽  
pp. 241-253 ◽  
Author(s):  
Daqi Zhu ◽  
Jie Bai ◽  
Simon Yang
2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Xiaoming Xu ◽  
Chenglin Wen

In traditional principle component analysis (PCA), because of the neglect of the dimensions influence between different variables in the system, the selected principal components (PCs) often fail to be representative. While the relative transformation PCA is able to solve the above problem, it is not easy to calculate the weight for each characteristic variable. In order to solve it, this paper proposes a kind of fault diagnosis method based on information entropy and Relative Principle Component Analysis. Firstly, the algorithm calculates the information entropy for each characteristic variable in the original dataset based on the information gain algorithm. Secondly, it standardizes every variable’s dimension in the dataset. And, then, according to the information entropy, it allocates the weight for each standardized characteristic variable. Finally, it utilizes the relative-principal-components model established for fault diagnosis. Furthermore, the simulation experiments based on Tennessee Eastman process and Wine datasets demonstrate the feasibility and effectiveness of the new method.


Author(s):  
Basavaraj N Hiremath ◽  
Malini M Patilb

The voice recognition system is about cognizing the signals, by feature extraction and identification of related parameters. The whole process is referred to as voice analytics. The paper aims at analysing and synthesizing the phonetics of voice using a computer program called “PRAAT”. The work carried out in the paper also supports the analysis of voice segmentation labelling, analyse the unique features of voice cues, understanding physics of voice, further the process is carried out to recognize sarcasm. Different unique features identified in the work are, intensity, pitch, formants related to read, speak, interactive and declarative sentences by using principle component analysis.


2003 ◽  
Vol 26 (6) ◽  
pp. 681-682
Author(s):  
Harry Howard

Jackendoff's criticisms of the current state of theorization in cognitive neuroscience are defused by recent work on the computational complementarity of the hippocampus and neocortex. Such considerations lead to a grounding of Jackendoff's processing model in the complementary methods of pattern analysis effected by independent component analysis (ICA) and principle component analysis (PCA).


Sign in / Sign up

Export Citation Format

Share Document