scholarly journals Adaptive Weibull Multiplicative Model and Multilayer Perceptron Neural Networks for Dark-Spot Detection from SAR Imagery

Sensors ◽  
2014 ◽  
Vol 14 (12) ◽  
pp. 22798-22810 ◽  
Author(s):  
Alireza Taravat ◽  
Natascha Oppelt
2010 ◽  
Vol 114 (9) ◽  
pp. 2026-2035 ◽  
Author(s):  
Yuanming Shu ◽  
Jonathan Li ◽  
Hamad Yousif ◽  
Gary Gomes

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Vaishali Chaudhary ◽  
Shashi Kumar

AbstractOil spills are a potential hazard, causing the deaths of millions of aquatic animals and this leaves a calamitous effect on the marine ecosystem. This research focuses on evaluating the potential of polarimetric parameters in discriminating the oil slick from water and also possible thicker/thinner zones within the slick. For this purpose, L-band UAVSAR quad-pol data of the Gulf of Mexico region is exploited. A total number of 19 polarimetric parameters are examined to study their behavior and ability in distinguishing oil slick from water and its own less or more oil accumulated zones. The simulation of compact-pol data from UAVSAR quad-pol data is carried out which has shown good performance in detection and discrimination of oil slick from water. To know the extent of separation between oil and water classes, a statistical separability analysis is carried out. The outcomes of each polarimetric parameter from separability analysis are then quantified with the radial basis function (RBF) supervised Support Vector Machine classifier followed with an accurate estimation of the results. Moreover, a comparison of the achieved and estimated accuracy has shown a significant drop in accuracy values. It has been observed that the highest accuracy is given by LHV compact-pol decomposition and coherency matrix with a classification accuracy of ~ 94.09% and ~ 94.60%, respectively. The proposed methodology has performed well in discriminating the oil slick by utilizing UAVSAR dataset for both quad-pol and compact-pol simulation.


2016 ◽  
Vol 19 (1) ◽  
pp. 49-59 ◽  
Author(s):  
Nina Pavlin-Bernardić ◽  
◽  
Silvija Ravić ◽  
Ivan Pavao Matić ◽  
◽  
...  

Artificial neural networks have a wide use in the prediction and classification of different variables, but their application in the area of educational psychology is still relatively rare. The aim of this study was to examine the accuracy of artificial neural networks in predicting students’ general giftedness. The participants were 221 fourth grade students from one Croatian elementary school. The input variables for artificial neural networks were teachers’ and peers’ nominations, school grades, earlier school readiness assessment and parents’ education. The output variable was the result on the Standard Progressive Matrices (Raven, 1994), according to which students were classified as gifted or non-gifted. We tested two artificial neural networks’ algorithms: multilayer perceptron and radial basis function. Within each algorithm, a number of different types of activation functions were tested. 80% of the sample was used for training the network and the remaining 20% to test the network. For a criterion according to which students were classified as gifted if their result on the Standard Progressive Matrices was in the 95th centile or above, the best model was obtained by the hyperbolic tangent multilayer perceptron, which had a high accuracy of 100% of correctly classified non-gifted students and 75% correctly classified gifted students in the test sample. When the criterion was the 90th centile or above, the best model was also obtained by the hyperbolic tangent multilayer perceptron, but the accuracy was lower: 94.7% in the classification of non-gifted students and 66.7% in the classification of gifted students. The study has shown artificial neural networks’ potential in this area, which should be further explored. Keywords: gifted students, identification of gifted students, artificial neural networks


2014 ◽  
Vol 171 (8) ◽  
pp. 1939-1949 ◽  
Author(s):  
Ilknur Kaftan ◽  
Petek Sındırgı ◽  
Özer Akdemir

Sign in / Sign up

Export Citation Format

Share Document