scholarly journals Dark spot detection for characterization of marine surface slicks using UAVSAR quad-pol data

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Vaishali Chaudhary ◽  
Shashi Kumar

AbstractOil spills are a potential hazard, causing the deaths of millions of aquatic animals and this leaves a calamitous effect on the marine ecosystem. This research focuses on evaluating the potential of polarimetric parameters in discriminating the oil slick from water and also possible thicker/thinner zones within the slick. For this purpose, L-band UAVSAR quad-pol data of the Gulf of Mexico region is exploited. A total number of 19 polarimetric parameters are examined to study their behavior and ability in distinguishing oil slick from water and its own less or more oil accumulated zones. The simulation of compact-pol data from UAVSAR quad-pol data is carried out which has shown good performance in detection and discrimination of oil slick from water. To know the extent of separation between oil and water classes, a statistical separability analysis is carried out. The outcomes of each polarimetric parameter from separability analysis are then quantified with the radial basis function (RBF) supervised Support Vector Machine classifier followed with an accurate estimation of the results. Moreover, a comparison of the achieved and estimated accuracy has shown a significant drop in accuracy values. It has been observed that the highest accuracy is given by LHV compact-pol decomposition and coherency matrix with a classification accuracy of ~ 94.09% and ~ 94.60%, respectively. The proposed methodology has performed well in discriminating the oil slick by utilizing UAVSAR dataset for both quad-pol and compact-pol simulation.

2020 ◽  
Vol 12 (8) ◽  
pp. 1352 ◽  
Author(s):  
Islam Abou El-Magd ◽  
Mohamed Zakzouk ◽  
Abdulaziz M. Abdulaziz ◽  
Elham M. Ali

The Suez Canal, being a main international maritime shipping route, experiences heavy ship traffic with probable illegal oil discharges. Oil pollution is harming the marine ecosystem and creates pressure on the coastal socio-economic activities particularly at Port Said city (the area of study). It is anticipated that the damage of oil spills is not only during the event but it extends for a long time and normally requires more effort to remediate and recover the environment. Hence, early detection and volume estimation of these spills is the first and most important step for a successful clean-up operation. This study is the first to use Sentinel-1 space-borne Synthetic Aperture Radar (SAR) images for oil spill detection and mapping over the north entrance of the Suez Canal aiming to enable operational monitoring. SAR sensors are able to capture images day and night and are not affected by weather conditions. In addition, they have a wide swath that covers large geographical areas for possible oil spills. The present study examines a large amount of data (800 scenes of sentinel 1) for the study area over a period of five years from 2014 till 2019 which resulted in the detection of more than 20 events of oil pollution. The detection model is based on the quantitative analysis of the dark spot of the radar backscatter of oil spills. The largest case covered nearly 26 km2 of seawater. The spill drift direction in the area of spills indicated potential hazard on fishing activities, Port Said beaches and ports. This study can be the base for continuously monitoring and alarming pollution cases in the Canal area which is important for environmental agencies, decision-makers, and beneficiaries for coastal and marine socio-economic sustainability.


Author(s):  
M. Sornam

Oil spill pollution plays a significant role in damaging marine ecosystem. Discharge of oil due to tanker accidents has the most dangerous effects on marine environment. The main waste source is the ship based operational discharges. Synthetic Aperture Radar (SAR) can be effectively used for the detection and classification of oil spills. Oil spills appear as dark spots in SAR images. One major advantage of SAR is that it can generate imagery under all weather conditions. However, similar dark spots may arise from a range of unrelated meteorological and oceanographic phenomena, resulting in misidentification. A major focus of research in this area is the development of algorithms to distinguish ‘oil spills’ from ‘look-alikes’. The features of detected dark spot are then extracted and classified to discriminate oil spills from look-alikes. This paper describes the development of a new approach to SAR oil spill detection using Segmentation method and Artificial Neural Networks (ANN). A SAR-based oil-spill detection process consists of three stages: image segmentation, feature extraction and object recognition (classification) of the segmented objects as oil spills or look-alikes. The image segmentation was performed with Otsu method. Classification has been done using Back Propagation Network and this network classifies objects into oil spills or look-alikes according to their feature parameters. Improved results have been achieved for the discrimination of oil spills and look-alikes.


Author(s):  
F. Zakeri ◽  
J. Amini

Oil spill surveillance is of great environmental and economical interest, directly contributing to improve environmental protection. Monitoring of oil spills using synthetic aperture radar (SAR) has received a considerable attention over the past few years, notably because of SAR data abilities like all-weather and day-and-night capturing. The degree of polarization (DoP) is a less computationally complex quantity characterizing a partially polarized electromagnetic field. The key to the proposed approach is making use of DoP as polarimetric information besides intensity ones to improve dark patches detection as the first step of oil spill monitoring. In the proposed approach first simple intensity threshold segmentation like Otsu method is applied to the image. Pixels with intensities below the threshold are regarded as potential dark spot pixels while the others are potential background pixels. Second, the DoP of potential dark spot pixels is estimated. Pixels with DoP below a certain threshold are the real dark-spot pixels. Choosing the threshold is a critical and challenging step. In order to solve choosing the appropriate threshold, we introduce a novel but simple method based on DoP of potential dark spot pixels. Finally, an area threshold is used to eliminate any remaining false targets. The proposed approach is tested on L band NASA/JPL UAVSAR data, covering the Deepwater Horizon oil spill in the Gulf of Mexico. Comparing the obtained results from the new method with conventional approaches like Otsu, K-means and GrowCut shows better achievement of the proposed algorithm. For instance, mean square error (MSE) 65%, Overall Accuracy 20% and correlation 40% are improved.


Author(s):  
S. Hari Priya ◽  
P. V. Jayasri ◽  
E. V. S Sita Kumari ◽  
A. V. V. Prasad

<p><strong>Abstract.</strong> Oil spills in oceans have a significant long term effect on the marine ecosystem and are of prime concern for maritime economy. In order to locate and estimate the oil spread area and for quantitative damage assessment, it is required to continually monitor the affected area on the sea and its surroundings and space based remote sensing makes this technically viable. Synthetic Aperture Radar SAR with its high sensitivity to target dielectric constant, look angle and polarization-dependent target backscatter has become a potential tool for oil-spill observation and maritime monitoring. From conventional single-channel SAR (single-pol, HH or VV) to multi-channel SAR – (Dual/Quad-polarization) and more recently compact polarimetric (Hybrid/Slant Linear) SAR systems have been widely used for oil-spill detection in the seas. Various polarimetric features have been proposed to classify oil spills using full, dual and compact polarimetric SAR. RISAT-1 is a C-band SAR with Circular Transmit and Linear Receive (CTLR) hybrid polarimetric imaging capability.This study is aimed at the polarimetric processing of RISAT-1 hybrid pol single look complex (SLC) data for derivation of the decisive polarimetric parameters which can be used to identify oil spills in oceans and their discrimination from look-alike signatures. In order to understand ocean–oil spill signatures from full-quad pol SAR, pseudo-quad pol covariance matrix is constructed from RISAT-1 hybrid pol using polarimetric scattering models .Then polarimetric processing is carried out over pseudo-quad pol data for oil slick detection. In-house developed software is used for carrying out the above oil-spill study.</p>


2010 ◽  
Vol 114 (9) ◽  
pp. 2026-2035 ◽  
Author(s):  
Yuanming Shu ◽  
Jonathan Li ◽  
Hamad Yousif ◽  
Gary Gomes

2021 ◽  
Vol 13 (7) ◽  
pp. 168781402110277
Author(s):  
Yankai Hou ◽  
Zhaosheng Zhang ◽  
Peng Liu ◽  
Chunbao Song ◽  
Zhenpo Wang

Accurate estimation of the degree of battery aging is essential to ensure safe operation of electric vehicles. In this paper, using real-world vehicles and their operational data, a battery aging estimation method is proposed based on a dual-polarization equivalent circuit (DPEC) model and multiple data-driven models. The DPEC model and the forgetting factor recursive least-squares method are used to determine the battery system’s ohmic internal resistance, with outliers being filtered using boxplots. Furthermore, eight common data-driven models are used to describe the relationship between battery degradation and the factors influencing this degradation, and these models are analyzed and compared in terms of both estimation accuracy and computational requirements. The results show that the gradient descent tree regression, XGBoost regression, and light GBM regression models are more accurate than the other methods, with root mean square errors of less than 6.9 mΩ. The AdaBoost and random forest regression models are regarded as alternative groups because of their relative instability. The linear regression, support vector machine regression, and k-nearest neighbor regression models are not recommended because of poor accuracy or excessively high computational requirements. This work can serve as a reference for subsequent battery degradation studies based on real-time operational data.


2021 ◽  
Vol 13 (11) ◽  
pp. 2044
Author(s):  
Marcos R. A. Conceição ◽  
Luis F. F. Mendonça ◽  
Carlos A. D. Lentini ◽  
André T. C. Lima ◽  
José M. Lopes ◽  
...  

A set of open-source routines capable of identifying possible oil-like spills based on two random forest classifiers were developed and tested with a Sentinel-1 SAR image dataset. The first random forest model is an ocean SAR image classifier where the labeling inputs were oil spills, biological films, rain cells, low wind regions, clean sea surface, ships, and terrain. The second one was a SAR image oil detector named “Radar Image Oil Spill Seeker (RIOSS)”, which classified oil-like targets. An optimized feature space to serve as input to such classification models, both in terms of variance and computational efficiency, was developed. It involved an extensive search from 42 image attribute definitions based on their correlations and classifier-based importance estimative. This number included statistics, shape, fractal geometry, texture, and gradient-based attributes. Mixed adaptive thresholding was performed to calculate some of the features studied, returning consistent dark spot segmentation results. The selected attributes were also related to the imaged phenomena’s physical aspects. This process helped us apply the attributes to a random forest, increasing our algorithm’s accuracy up to 90% and its ability to generate even more reliable results.


2017 ◽  
Vol 81 ◽  
pp. 384-397 ◽  
Author(s):  
Patrícia Genovez ◽  
Nelson Ebecken ◽  
Corina Freitas ◽  
Cristina Bentz ◽  
Ramon Freitas

Agriculture ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1129
Author(s):  
Yiping Peng ◽  
Lu Wang ◽  
Li Zhao ◽  
Zhenhua Liu ◽  
Chenjie Lin ◽  
...  

Soil nutrients play a vital role in plant growth and thus the rapid acquisition of soil nutrient content is of great significance for agricultural sustainable development. Hyperspectral remote-sensing techniques allow for the quick monitoring of soil nutrients. However, at present, obtaining accurate estimates proves to be difficult due to the weak spectral features of soil nutrients and the low accuracy of soil nutrient estimation models. This study proposed a new method to improve soil nutrient estimation. Firstly, for obtaining characteristic variables, we employed partial least squares regression (PLSR) fit degree to select an optimal screening algorithm from three algorithms (Pearson correlation coefficient, PCC; least absolute shrinkage and selection operator, LASSO; and gradient boosting decision tree, GBDT). Secondly, linear (multi-linear regression, MLR; ridge regression, RR) and nonlinear (support vector machine, SVM; and back propagation neural network with genetic algorithm optimization, GABP) algorithms with 10-fold cross-validation were implemented to determine the most accurate model for estimating soil total nitrogen (TN), total phosphorus (TP), and total potassium (TK) contents. Finally, the new method was used to map the soil TK content at a regional scale using the soil component spectral variables retrieved by the fully constrained least squares (FCLS) method based on an image from the HuanJing-1A Hyperspectral Imager (HJ-1A HSI) of the Conghua District of Guangzhou, China. The results identified the GBDT-GABP was observed as the most accurate estimation method of soil TN ( of 0.69, the root mean square error of cross-validation (RMSECV) of 0.35 g kg−1 and ratio of performance to interquartile range (RPIQ) of 2.03) and TP ( of 0.73, RMSECV of 0.30 g kg−1 and RPIQ = 2.10), and the LASSO-GABP proved to be optimal for soil TK estimations ( of 0.82, RMSECV of 3.39 g kg−1 and RPIQ = 3.57). Additionally, the highly accurate LASSO-GABP-estimated soil TK (R2 = 0.79) reveals the feasibility of the LASSO-GABP method to retrieve soil TK content at the regional scale.


Sign in / Sign up

Export Citation Format

Share Document