scholarly journals Membrane Potential and Calcium Dynamics in Beta Cells from Mouse Pancreas Tissue Slices: Theory, Experimentation, and Analysis

Sensors ◽  
2015 ◽  
Vol 15 (11) ◽  
pp. 27393-27419 ◽  
Author(s):  
Jurij Dolenšek ◽  
Denis Špelič ◽  
Maša Klemen ◽  
Borut Žalik ◽  
Marko Gosak ◽  
...  
PLoS ONE ◽  
2013 ◽  
Vol 8 (12) ◽  
pp. e82374 ◽  
Author(s):  
Jurij Dolenšek ◽  
Andraž Stožer ◽  
Maša Skelin Klemen ◽  
Evan W. Miller ◽  
Marjan Slak Rupnik

2020 ◽  
Author(s):  
Jurij Dolenšek ◽  
Maša Skelin Klemen ◽  
Marko Gosak ◽  
Lidija Križančić-Bombek ◽  
Viljem Pohorec ◽  
...  

AbstractGlucose progressively stimulates insulin release over a wide range of concentrations. However, the nutrient coding underlying activation, activity, and deactivation of beta cells affecting insulin release remains only partially described. Experimental data indicate that nutrient sensing in coupled beta cells in islets is predominantly a collective trait, overriding to a large extent functional differences between cells. However, some degree of heterogeneity between coupled beta cells may play important roles. To further elucidate glucose-dependent modalities in coupled beta cells, the degree of functional heterogeneity, and uncover the emergent collective operations, we combined acute mouse pancreas tissue slices with functional multicellular calcium imaging. We recorded beta cell calcium responses from threshold (7 mM) to supraphysiological (16 mM) glucose concentrations with high spatial and temporal resolution. This enabled the analysis of both classical physiological parameters and complex network parameters, as well as their comparison at the level of individual cells. The activation profile displayed two major glucose concentration-dependent features, shortening of delays to initial activation, and shortening of delays until half activation with increasing glucose concentration. Inversely, during deactivation both delays to initial deactivation and until half deactivation were progressively longer with increasing glucose concentration. The plateau activity with fast calcium oscillations expressed two types of glucose-dependence. Physiological concentrations mostly affected the frequency of oscillations, whereas supraphysiological concentrations progressively prolonged the duration of oscillations. Most of the measured functional network parameters also showed clear glucose-dependence. In conclusion, we propose novel understanding for glucose-dependent coding properties in beta cell networks, and its deciphering may have repercussions for our understanding of the normal physiology of glucose homeostasis as well as of disturbances of metabolic homeostasis, such as diabetes mellitus.


2022 ◽  
Author(s):  
Viljem Pohorec ◽  
Lidija Krizancic Bombek ◽  
Masa Skelin Klemen ◽  
Jurij Dolensek ◽  
Andraz Stozer

Although mice are a very instrumental model in islet beta cell research, possible phenotypic differences between strains and substrains are largely neglected in the scientific community. In this study, we show important phenotypic differences in beta cell responses to glucose between NMRI, C57BL/6J, and C57BL/6N mice, i.e., the three most commonly used strains. High-resolution multicellular confocal imaging of beta cells in acute pancreas tissue slices was used to measure and quantitatively compare the calcium dynamics in response to a wide range of glucose concentrations. Strain- and substrain-specific features were found in all three phases of beta cell responses to glucose: a shift in the dose-response curve characterizing the delay to activation and deactivation in response to stimulus onset and termination, respectively, and distinct concentration-encoding principles during the plateau phase in terms of frequency, duration, and active time changes with increasing glucose concentrations. Our results underline the significance of carefully choosing and reporting the strain to enable comparison and increase reproducibility, emphasize the importance of analyzing a number of different beta cell physiological parameters characterizing the response to glucose, and provide a valuable standard for future studies on beta cell calcium dynamics in health and disease.


PLoS ONE ◽  
2013 ◽  
Vol 8 (1) ◽  
pp. e54638 ◽  
Author(s):  
Andraž Stožer ◽  
Jurij Dolenšek ◽  
Marjan Slak Rupnik

2011 ◽  
Vol 589 (2) ◽  
pp. 395-408 ◽  
Author(s):  
Ya-Chi Huang ◽  
Marjan Rupnik ◽  
Herbert Y. Gaisano

Diabetologia ◽  
2004 ◽  
Vol 47 (3) ◽  
pp. 488-498 ◽  
Author(s):  
M. Düfer ◽  
D. Haspel ◽  
P. Krippeit-Drews ◽  
L. Aguilar-Bryan ◽  
J. Bryan ◽  
...  

1987 ◽  
Vol 58 (6) ◽  
pp. 1259-1274 ◽  
Author(s):  
A. J. Berger ◽  
T. E. Dick

1. Intracellular recordings were made from 50 dorsal respiratory group (DRG) neurons in the region of the ventrolateral nucleus of the solitary tract in anesthetized, paralyzed cats ventilated with a cycle-triggered pump whose inflation stroke was triggered by the onset of phrenic nerve inspiratory (I) discharge. Activity was recorded simultaneously in the ipsilateral nodose ganglion from sensory cell bodies of slowly adapting pulmonary stretch receptors (PSRs). 2. Respiratory cycle-related membrane potential changes of DRG neurons were recorded. Twenty-six neurons that did not exhibit spikes were classified as I alpha, I beta or pump (P)-cells by comparing their membrane potential trajectories during I in the presence of lung inflation with that observed during I, but with lung inflation withheld. The remaining 24 neurons were classified similarly, but the classification was based upon a comparison of their I-phase spike activity responses with and without lung inflation. I phase-related histograms of either membrane potential or spike activity were constructed to facilitate DRG neuronal classification. Additionally, steady lung inflation of varying magnitudes was applied during the expiratory phase. This prolonged expiration and produced different responses in the neurons. Generally, I beta and P-cells were depolarized, whereas I alpha cells were hyperpolarized. 3. Low-intensity electrical stimulation of the ipsilateral vagus nerve evoked excitatory postsynaptic potentials (EPSPs) in all three DRG neuronal types. P-cells and I beta cells exhibited EPSPs in response to the lowest intensity; generally this intensity was below threshold for the simultaneously recorded PSR. Overall, EPSPs in I alpha cells had the highest thresholds, but some EPSPs could be evoked at thresholds similar to those of the I beta cells. The distributions of the average onset latency of the evoked EPSP overlapped considerably. Thus vagal electrical stimulation cannot be used for unequivocal classification of DRG neurons into I alpha, I beta, and P-cell subpopulations. 4. Using intracellular spike-triggered averaging, single PSRs were shown to generate monosynaptic EPSPs in I beta neurons and P-cells but not I alpha cells. Divergence of single PSR afferents also was observed. Relationships between EPSP shape factors, amplitudes, and PSR afferent conduction velocity are similar to those previously observed for monosynaptic EPSPs in hindlimb motoneurons generated by spinal afferents.


Sign in / Sign up

Export Citation Format

Share Document