scholarly journals Development of an Unmanned Aerial Vehicle-Borne Crop-Growth Monitoring System

Sensors ◽  
2017 ◽  
Vol 17 (3) ◽  
pp. 502 ◽  
Author(s):  
Jun Ni ◽  
Lili Yao ◽  
Jingchao Zhang ◽  
Weixing Cao ◽  
Yan Zhu ◽  
...  
2019 ◽  
Vol 11 (10) ◽  
pp. 1226 ◽  
Author(s):  
Jianqing Zhao ◽  
Xiaohu Zhang ◽  
Chenxi Gao ◽  
Xiaolei Qiu ◽  
Yongchao Tian ◽  
...  

To improve the efficiency and effectiveness of mosaicking unmanned aerial vehicle (UAV) images, we propose in this paper a rapid mosaicking method based on scale-invariant feature transform (SIFT) for mosaicking UAV images used for crop growth monitoring. The proposed method dynamically sets the appropriate contrast threshold in the difference of Gaussian (DOG) scale-space according to the contrast characteristics of UAV images used for crop growth monitoring. Therefore, this method adjusts and optimizes the number of matched feature point pairs in UAV images and increases the mosaicking efficiency. Meanwhile, based on the relative location relationship of UAV images used for crop growth monitoring, the random sample consensus (RANSAC) algorithm is integrated to eliminate the influence of mismatched point pairs in UAV images on mosaicking and to keep the accuracy and quality of mosaicking. Mosaicking experiments were conducted by setting three types of UAV images in crop growth monitoring: visible, near-infrared, and thermal infrared. The results indicate that compared to the standard SIFT algorithm and frequently used commercial mosaicking software, the method proposed here significantly improves the applicability, efficiency, and accuracy of mosaicking UAV images in crop growth monitoring. In comparison with image mosaicking based on the standard SIFT algorithm, the time efficiency of the proposed method is higher by 30%, and its structural similarity index of mosaicking accuracy is about 0.9. Meanwhile, the approach successfully mosaics low-resolution UAV images used for crop growth monitoring and improves the applicability of the SIFT algorithm, providing a technical reference for UAV application used for crop growth and phenotypic monitoring.


2020 ◽  
Vol 12 (3) ◽  
pp. 508 ◽  
Author(s):  
Zhaopeng Fu ◽  
Jie Jiang ◽  
Yang Gao ◽  
Brian Krienke ◽  
Meng Wang ◽  
...  

Leaf area index (LAI) and leaf dry matter (LDM) are important indices of crop growth. Real-time, nondestructive monitoring of crop growth is instructive for the diagnosis of crop growth and prediction of grain yield. Unmanned aerial vehicle (UAV)-based remote sensing is widely used in precision agriculture due to its unique advantages in flexibility and resolution. This study was carried out on wheat trials treated with different nitrogen levels and seeding densities in three regions of Jiangsu Province in 2018–2019. Canopy spectral images were collected by the UAV equipped with a multi-spectral camera during key wheat growth stages. To verify the results of the UAV images, the LAI, LDM, and yield data were obtained by destructive sampling. We extracted the wheat canopy reflectance and selected the best vegetation index for monitoring growth and predicting yield. Simple linear regression (LR), multiple linear regression (MLR), stepwise multiple linear regression (SMLR), partial least squares regression (PLSR), artificial neural network (ANN), and random forest (RF) modeling methods were used to construct a model for wheat yield estimation. The results show that the multi-spectral camera mounted on the multi-rotor UAV has a broad application prospect in crop growth index monitoring and yield estimation. The vegetation index combined with the red edge band and the near-infrared band was significantly correlated with LAI and LDM. Machine learning methods (i.e., PLSR, ANN, and RF) performed better for predicting wheat yield. The RF model constructed by normalized difference vegetation index (NDVI) at the jointing stage, heading stage, flowering stage, and filling stage was the optimal wheat yield estimation model in this study, with an R2 of 0.78 and relative root mean square error (RRMSE) of 0.1030. The results provide a theoretical basis for monitoring crop growth with a multi-rotor UAV platform and explore a technical method for improving the precision of yield estimation.


Author(s):  
Md. Al-Farabi ◽  
Muntasir Chowdhury ◽  
Md. Readuzzaman ◽  
Md. Hossain ◽  
Saifur Sabuj ◽  
...  

2016 ◽  
Vol 3 (1) ◽  
pp. 102-111
Author(s):  
Aleksandrs Urbahs ◽  
Rima Mickevičienė ◽  
Vasilij Djačkov ◽  
Kristīne Carjova ◽  
Valdas Jankūnas ◽  
...  

Abstract The paper gives brief description of the conventional and innovative hydrography survey methods and constraints connected with the realization. Proposed hydrographic survey system based on the use of Unmanned Aerial and Maritime systems provides functionality to conduct hydrographic measurements and environment monitoring. System can be easily adapted to fulfil marine safety and security operations, e.g. intrusion threat monitoring, hazardous pollutions monitoring and prevention operations, icing conditions monitoring.


2021 ◽  
Vol 87 (12) ◽  
pp. 891-899
Author(s):  
Freda Elikem Dorbu ◽  
Leila Hashemi-Beni ◽  
Ali Karimoddini ◽  
Abolghasem Shahbazi

The introduction of unmanned-aerial-vehicle remote sensing for collecting high-spatial- and temporal-resolution imagery to derive crop-growth indicators and analyze and present timely results could potentially improve the management of agricultural businesses and enable farmers to apply appropriate solution, leading to a better food-security framework. This study aimed to analyze crop-growth indicators such as the normalized difference vegetation index (NDVI), crop height, and vegetated surface roughness to determine the growth of corn crops from planting to harvest. Digital elevation models and orthophotos generated from the data captured using multispectral, red/green/blue, and near-infrared sensors mounted on an unmanned aerial vehicle were processed and analyzed to calculate the various crop-growth indicators. The results suggest that remote sensing-based growth indicators can effectively determine crop growth over time, and that there are similarities and correlations between the indicators.


Sign in / Sign up

Export Citation Format

Share Document