scholarly journals Sparse Representation Based Frequency Detection and Uncertainty Reduction in Blade Tip Timing Measurement for Multi-Mode Blade Vibration Monitoring

Sensors ◽  
2017 ◽  
Vol 17 (8) ◽  
pp. 1745 ◽  
Author(s):  
◽  
◽  
◽  
◽  
Author(s):  
Jindrich Liska ◽  
Vojtech Vasicek ◽  
Jan Jakl

Ensuring the reliability of the steam turbine is the key for its long life. For this purpose monitoring systems are standardly used. Early detection of any failure can avoid possible economical and material losses. A monitoring of rotating blades vibration belongs to the very important tasks of the turbomachinery state assessment. Especially in terms of the last stages of low-pressure part, where the longest blades are vibrating at most. Commonly used methods for blade vibration monitoring are based on contact measurement using strain gauges or non-contact approach based on blade tip timing measurement. Rising demand for low-cost monitoring systems has initiated development of a new approach in blade vibration monitoring task. The presented approach is based on usage of relative rotor vibration signals. Its advantage is in using of standardly installed sensors making this approach economically interesting for the turbine operators compared to the traditionally used methods, mentioned above. This paper summarizes the symptoms of blade vibration phenomenon in relative shaft vibration signals, the impact of operating conditions on the blade vibration amplitude and its comparison to blade tip-timing measurement results. In addition of several examples, the article also describes an evaluation of proposed method in operation of steam turbine with power of 170MW.


2016 ◽  
Vol 81 ◽  
pp. 250-258 ◽  
Author(s):  
Jun Lin ◽  
Zheng Hu ◽  
Zhong-Sheng Chen ◽  
Yong-Min Yang ◽  
Hai-Long Xu

Author(s):  
Jie Tian ◽  
Xiaopu Zhang ◽  
Yong Chen ◽  
Peter Russhard ◽  
Hua Ouyang

Abstract Based on the blade vibration theory of turbomachinery and the basic principle of blade timing systems, a sparse reconstruction model is derived for the tip timing signal under an arbitrary sensor circumferential placement distribution. The proposed approach uses the sparsity of the tip timing signal in the frequency domain. The application of compressive sensing in reconstructing the blade tip timing signal and monitoring multi-mode blade vibrations is explored. To improve the reconstruction effect, a number of numerical experiments are conducted to examine the effects of various factors on synchronous and non-synchronous signals. This enables the specific steps involved in the compressive sensing reconstruction of tip timing signals to be determined. The proposed method is then applied to the tip timing data of a 27-blade rotor. The results show that the method accurately identifies the multi-mode blade vibrations at different rotation speeds. The proposed method has the advantages of low dependence on prior information, insensitivity to environmental noise, and simultaneous identification of synchronous and non-synchronous signals. The experimental results validate the effectiveness of the proposed approach in engineering applications.


Sensors ◽  
2015 ◽  
Vol 15 (2) ◽  
pp. 2419-2437 ◽  
Author(s):  
Zheng Hu ◽  
Jun Lin ◽  
Zhong-Sheng Chen ◽  
Yong-Min Yang ◽  
Xue-Jun Li

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Haonan Guo ◽  
Yongmin Yang ◽  
Fengjiao Guan ◽  
Haifeng Hu ◽  
Guoji Shen ◽  
...  

During the working process of the turbine, some types of faults can cause changes in the vibration characteristics of the blades. The real-time vibration monitoring of the blades is of great significance to the stable operation and state-based maintenance. Torsional vibration is a kind of blade vibration modes and results in failures such as cracks easily. Thus, it is important to measure it due to the harmfulness of torsional vibration. Firstly, the principle of blade tip timing (BTT) is introduced, and the models of the blade are built to analyze the characteristics of torsional vibration. Then, the compressed sensing theory is introduced, and its related parameters are determined according to the measurement requirements. Next, based on the condition that the blade rigidity axis is not bent and bent, respectively, the layout method of sensors is proposed and the numerical simulation of the measurement process is performed. The results of the above two types of numerical simulation verify the proposed measurement method. Finally, by analyzing the influencing factors of measurement uncertainty, the optimization method of sensors’ layout is further proposed. This study can provide important theoretical guidance for the measurement of blade torsional vibration.


Author(s):  
Craig Lawson ◽  
Paul Ivey

Turbomachinery blade vibrations of sufficient amplitude cause High Cycle Fatigue, which reduces blade life. In order to observe this vibration a non-intrusive monitoring system is sought. The vibration can be detected by measuring blade tip timing since in the presence of vibration the blade timing will differ slightly from the passing time calculated from rotor speed. This paper provides new insights into the ability of a commercially available capacitance probe tip clearance measurement system for application as a non-intrusive turbomachinery blade tip timing measurement device. Initial experimental investigations are reported where a compressor blade with mounted strain gauges is used in a low-speed compressor. Capacitance probe results are correlated with simultaneously measured strain gauge results. Finite Element simulations are also used. The performance of the capacitance system in measuring blade vibration is analysed. Measurements were facilitated by the commissioning of a new instrument dedicated compressor test facility and this test facility is described.


10.5772/29550 ◽  
2012 ◽  
Author(s):  
Ryszard Szczepanik ◽  
Radosaw Przysowa ◽  
Jarosaw Spychaa ◽  
Edward Rokicki ◽  
Krzysztof Kazmierczak ◽  
...  

Author(s):  
Craig Lawson ◽  
Paul C. Ivey

Turbomachinery blade vibrations can cause High Cycle Fatigue, which reduces blade life. In order to observe this vibration a non-intrusive monitoring system is sought. The vibration can be detected by measuring blade tip timing since in the presence of vibration the blade timing will differ slightly from the passing time calculated from rotor speed. Much research and development has gone into investigating the ability of optical probes to achieve this. However, this paper looks at the potential for a dual use capacitance probe sensor to measure both tip timing and tip clearance. This paper provides new insights into the ability of a commercially available capacitance probe tip clearance measurement system for application as a non-intrusive turbomachinery blade tip timing measurement device. This is done by correlating capacitance probe tip timing results with simultaneously measured blade-mounted strain gauge vibration results and precise rotational speeds. Thus the characterisation of the performance of the capacitance probe system when measuring blade vibration on a full-sized low-speed research compressor is analysed and reported.


Sign in / Sign up

Export Citation Format

Share Document