Reconstruction of the Blade Vibration Signal from Rotating Machinery Based on Blade Tip-timing Measurement

2011 ◽  
Vol 47 (13) ◽  
pp. 98 ◽  
Author(s):  
Menglin LI
Author(s):  
Jindrich Liska ◽  
Vojtech Vasicek ◽  
Jan Jakl

Ensuring the reliability of the steam turbine is the key for its long life. For this purpose monitoring systems are standardly used. Early detection of any failure can avoid possible economical and material losses. A monitoring of rotating blades vibration belongs to the very important tasks of the turbomachinery state assessment. Especially in terms of the last stages of low-pressure part, where the longest blades are vibrating at most. Commonly used methods for blade vibration monitoring are based on contact measurement using strain gauges or non-contact approach based on blade tip timing measurement. Rising demand for low-cost monitoring systems has initiated development of a new approach in blade vibration monitoring task. The presented approach is based on usage of relative rotor vibration signals. Its advantage is in using of standardly installed sensors making this approach economically interesting for the turbine operators compared to the traditionally used methods, mentioned above. This paper summarizes the symptoms of blade vibration phenomenon in relative shaft vibration signals, the impact of operating conditions on the blade vibration amplitude and its comparison to blade tip-timing measurement results. In addition of several examples, the article also describes an evaluation of proposed method in operation of steam turbine with power of 170MW.


Author(s):  
Craig Lawson ◽  
Paul Ivey

Turbomachinery blade vibrations of sufficient amplitude cause High Cycle Fatigue, which reduces blade life. In order to observe this vibration a non-intrusive monitoring system is sought. The vibration can be detected by measuring blade tip timing since in the presence of vibration the blade timing will differ slightly from the passing time calculated from rotor speed. This paper provides new insights into the ability of a commercially available capacitance probe tip clearance measurement system for application as a non-intrusive turbomachinery blade tip timing measurement device. Initial experimental investigations are reported where a compressor blade with mounted strain gauges is used in a low-speed compressor. Capacitance probe results are correlated with simultaneously measured strain gauge results. Finite Element simulations are also used. The performance of the capacitance system in measuring blade vibration is analysed. Measurements were facilitated by the commissioning of a new instrument dedicated compressor test facility and this test facility is described.


Author(s):  
Craig Lawson ◽  
Paul C. Ivey

Turbomachinery blade vibrations can cause High Cycle Fatigue, which reduces blade life. In order to observe this vibration a non-intrusive monitoring system is sought. The vibration can be detected by measuring blade tip timing since in the presence of vibration the blade timing will differ slightly from the passing time calculated from rotor speed. Much research and development has gone into investigating the ability of optical probes to achieve this. However, this paper looks at the potential for a dual use capacitance probe sensor to measure both tip timing and tip clearance. This paper provides new insights into the ability of a commercially available capacitance probe tip clearance measurement system for application as a non-intrusive turbomachinery blade tip timing measurement device. This is done by correlating capacitance probe tip timing results with simultaneously measured blade-mounted strain gauge vibration results and precise rotational speeds. Thus the characterisation of the performance of the capacitance probe system when measuring blade vibration on a full-sized low-speed research compressor is analysed and reported.


Measurement ◽  
2021 ◽  
Vol 176 ◽  
pp. 109168
Author(s):  
Suiyu Chen ◽  
Yongmin Yang ◽  
Haifeng Hu ◽  
Fengjiao Guan ◽  
Guoji Shen ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kai Wei ◽  
Xuwen Jing ◽  
Bingqiang Li ◽  
Chao Kang ◽  
Zhenhuan Dou ◽  
...  

AbstractIn recent years, considerable attention has been paid in time–frequency analysis (TFA) methods, which is an effective technology in processing the vibration signal of rotating machinery. However, TFA techniques are not sufficient to handle signals having a strong non-stationary characteristic. To overcome this drawback, taking short-time Fourier transform as a link, a TFA methods that using the generalized Warblet transform (GWT) in combination with the second order synchroextracting transform (SSET) is proposed in this study. Firstly, based on the GWT and SSET theories, this paper proposes a method combining the two TFA methods to improve the TFA concentration, named GWT–SSET. Secondly, the method is verified numerically with single-component and multi-component signals, respectively. Quantized indicators, Rényi entropy and mean relative error (MRE) are used to analyze the concentration of TFA and accuracy of instantly frequency (IF) estimation, respectively. Finally, the proposed method is applied to analyze nonstationary signals in variable speed. The numerical and experimental results illustrate the effectiveness of the GWT–SSET method.


Author(s):  
Jie Tian ◽  
Xiaopu Zhang ◽  
Yong Chen ◽  
Peter Russhard ◽  
Hua Ouyang

Abstract Based on the blade vibration theory of turbomachinery and the basic principle of blade timing systems, a sparse reconstruction model is derived for the tip timing signal under an arbitrary sensor circumferential placement distribution. The proposed approach uses the sparsity of the tip timing signal in the frequency domain. The application of compressive sensing in reconstructing the blade tip timing signal and monitoring multi-mode blade vibrations is explored. To improve the reconstruction effect, a number of numerical experiments are conducted to examine the effects of various factors on synchronous and non-synchronous signals. This enables the specific steps involved in the compressive sensing reconstruction of tip timing signals to be determined. The proposed method is then applied to the tip timing data of a 27-blade rotor. The results show that the method accurately identifies the multi-mode blade vibrations at different rotation speeds. The proposed method has the advantages of low dependence on prior information, insensitivity to environmental noise, and simultaneous identification of synchronous and non-synchronous signals. The experimental results validate the effectiveness of the proposed approach in engineering applications.


Author(s):  
Weimin Wang ◽  
Sanqun Ren ◽  
Shan Huang ◽  
Qihang Li ◽  
Kang Chen

Generally, turbine blade vibration can be divided into asynchronous vibration and synchronous vibration. Comparing to parameters identification of asynchronous vibration, that of the synchronous vibration is more difficult and needs more sensors. The applicability of the synchronous identification method is more stringent than that of asynchronous identification method. A new method is presented to identify the blade synchronous vibration parameters based on the blade tip-timing (BTT) method and previous achievements in this region. Here, the parameters, such as the frequency of harmonic resonance center, blade vibration amplitude and the initial phase, are obtained by the nonlinear least square fitting algorithm based on relationships between the rotation speed and the blade tip displacement. We call this way as sweep frequency fitting (SFF) method. As the blade is operated at a constant speed that is near the frequency of resonance center, the blade vibration displacement can be obtained by the sensors at different positions, so the blade synchronous vibration Engine Order (EO) can be obtained by the global autoregressive with instrumental variables (GARIV) method. Furthermore the Campbell diagram of blade synchronous vibration can be plotted by the parameters obtained by GARIV method and SFF method. In the experimental study, the parameter identification of blade synchronous vibration is completed and the Campbell diagram of blade vibration is accurately plotted under the excitation of six magnets. Meanwhile, the experimental study and analysis on the harmonic vibration of blade with different numbers of excitation are carried out. The relative deviation of the dynamic frequency of blade between the experimental result and simulation result is less than 1%.


Author(s):  
Henry Jones

A technique for measuring turbine engine rotor blade vibrations has been developed as an alternative to conventional strain-gage measurement systems. Light probes are mounted on the periphery of the engine rotor casing to sense the precise blade passing times of each blade in the row. The timing data are processed on-line to identify (1) individual blade vibration amplitudes and frequencies, (2) interblade phases, (3) system modal definitions, and (4) blade static deflection. This technique has been effectively applied to both turbine engine rotors and plant rotating machinery.


Sign in / Sign up

Export Citation Format

Share Document