scholarly journals TwitterSensing: An Event-Based Approach for Wireless Sensor Networks Optimization Exploiting Social Media in Smart City Applications

Sensors ◽  
2018 ◽  
Vol 18 (4) ◽  
pp. 1080 ◽  
Author(s):  
Daniel Costa ◽  
Cristian Duran-Faundez ◽  
Daniel Andrade ◽  
João Rocha-Junior ◽  
João Peixoto
2015 ◽  
Vol 60 (9) ◽  
pp. 2470-2475 ◽  
Author(s):  
Qinyuan Liu ◽  
Zidong Wang ◽  
Xiao He ◽  
D. H. Zhou

2009 ◽  
Vol 53 (12) ◽  
pp. 1980-1996 ◽  
Author(s):  
Eduardo F. Nakamura ◽  
Heitor S. Ramos ◽  
Leandro A. Villas ◽  
Horacio A.B.F. de Oliveira ◽  
Andre L.L. de Aquino ◽  
...  

2019 ◽  
Vol 5 (1) ◽  
Author(s):  
Munsyi Munsyi ◽  
Muhammad Syahid Febriadi ◽  
Nahdi Saubari

Di era Internet of Things (IoT). Siapapun dapat mengakses data dimanapun dan kapanpun. Semua data yang tersimpan dapat diakses dengan menggunakan perangkat seperti smartphone, laptop, dan komputer. Salah satu dari teknologi Internet of Things adalah smart city untuk memonitoring lingkungan. Untuk dapat mengetahui kondisi dan kualitas suatu lingkungan, seseorang tidak perlu lagi menunggu pengumuman informasi atau datang ke instansi terkait di pemerintahan. Pemanfaatan IoT pada monitoring lingkungan dapat di terapkan pada bidang peternakan. Hal ini dapat membantu seseorang dalam mengetahui kualitas dari kondisi lingkungan yang akan dimanfaatkan untuk peternakan. Dalam hal ini adalah bagaimana mengetahui peternakan yang cocok untuk diterapkan dilingkungan yang dia tuju untuk membangun peternakan sapi atau peternakan ayam. Menggunakan perangkat wireless sensor networks (WSN) untuk melakukan pengambilan nilai dari kondisi lingkungan tersebut dapat membantu mengetahui kondisi dan kualitas lingkungan. IoT membantu seseorang untuk membuka usaha dibidang peternakan yang cocok untuk wilayah tersebut tanpa harus melakukan banyak survey yang menelan banyak biaya. Hanya dengan menggunakan teknologi IoT siapapun dapat mendapatkan data kualitas lingkungan yang cocok untuk membuka sebuah peternakan dengan kondisi lingkungan yang sudah diketahui sebelumnya. Kata kunci: Internet of Things, Kondisi Lingkungan, Peternakan, Smart City, WSN. In the Internet of Things era (IoT). Everyone can access the data in anywhere and anytime. All stored data can be accessed using end devices such as smartphones, laptops and computers. One of the IoT technologies is a smart city for monitoring the environment. To be able to know the condition and quality of an environment, everyone does not need to wait for the announcement of information or come to the relevant agencies in the government. Utilization of IoT on Environmental Monitoring can be applied to the field of ranch. in this case it will be used for helping someone in knowing the quality of environmental conditions that will be used for. In this case it is how to find out which ranchs are suitable to be applied in the environment from the user that he want to construct cow or chicken ranch. Using wireless sensor networks (WSN) to retrieve values from these environmental conditions can help determine the condition and quality of the environment. IoT helps someone to open a business in field of ranchs that is suitable for region without having to do many survey. Only by using IoT, anyone can get suitable environmental quality data to open a ranch with environmental conditions that have been known before.Keywords: Environmental conditions, Internet of Things, Ranch, Smart City, WSN. 


Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3215 ◽  
Author(s):  
Malvin Nkomo ◽  
Gerhard P. Hancke ◽  
Adnan M. Abu-Mahfouz ◽  
Saurabh Sinha ◽  
Adeiza. J. Onumanyi

In recent times, Wireless Sensor Networks (WSNs) are broadly applied in the Industrial Internet of Things (IIoT) in order to enhance the productivity and efficiency of existing and prospective manufacturing industries. In particular, an area of interest that concerns the use of WSNs in IIoT is the concept of sensor network virtualization and overlay networks. Both network virtualization and overlay networks are considered contemporary because they provide the capacity to create services and applications at the edge of existing virtual networks without changing the underlying infrastructure. This capability makes both network virtualization and overlay network services highly beneficial, particularly for the dynamic needs of IIoT based applications such as in smart industry applications, smart city, and smart home applications. Consequently, the study of both WSN virtualization and overlay networks has become highly patronized in the literature, leading to the growth and maturity of the research area. In line with this growth, this paper provides a review of the development made thus far concerning virtualized sensor networks, with emphasis on the application of overlay networks in IIoT. Principally, the process of virtualization in WSN is discussed along with its importance in IIoT applications. Different challenges in WSN are also presented along with possible solutions given by the use of virtualized WSNs. Further details are also presented concerning the use of overlay networks as the next step to supporting virtualization in shared sensor networks. Our discussion closes with an exposition of the existing challenges in the use of virtualized WSN for IIoT applications. In general, because overlay networks will be contributory to the future development and advancement of smart industrial and smart city applications, this review may be considered by researchers as a reference point for those particularly interested in the study of this growing field.


Author(s):  
Asfandyar Khan ◽  
Azween Abdullah ◽  
Nurul Hasan

Wireless sensor networks (WSANs) are increasingly being used and deployed to monitor the surrounding physical environments and detect events of interest. In wireless sensor networks, energy is one of the primary issues and requires the conservation of energy of the sensor nodes, so that network lifetime can be maximized. It is not recommended as a way to transmit or store all data of the sensor nodes for analysis to the end user. The purpose of this “Event Based Detection” Model is to simulate the results in terms of energy savings during field activities like a fire detection system in a remote area or habitat monitoring, and it is also used in security concerned issues. The model is designed to detect events (when occurring) of significant changes and save the data for further processing and transmission. In this way, the amount of transmitted data is reduced, and the network lifetime is increased. The main goal of this model is to meet the needs of critical condition monitoring applications and increase the network lifetime by saving more energy. This is useful where the size of the network increases. Matlab software is used for simulation.


Sign in / Sign up

Export Citation Format

Share Document