scholarly journals Deceptive Jamming Detection for SAR Based on Cross-Track Interferometry

Sensors ◽  
2018 ◽  
Vol 18 (7) ◽  
pp. 2265 ◽  
Author(s):  
Qingqing Feng ◽  
Huaping Xu ◽  
Zhefeng Wu ◽  
Wei Liu

Deceptive jamming against synthetic aperture radar (SAR) can create false targets or deceptive scenes in the image effectively. Based on the difference in interferometric phase between the target and deceptive jamming signals, a novel method for detecting deceptive jamming using cross-track interferometry is proposed, where the echoes with deceptive jamming are received by two SAR antennas simultaneously and the false targets are identified through SAR interferometry. Since the derived false phase is close to a constant in interferogram, it is extracted through phase filtering and frequency detection. Finally, the false targets in the SAR image are obtained according to the detected false part in the interferogram. The effectiveness of the proposed method is validated by simulation results based on the TanDEM-X system.

2019 ◽  
Vol 67 (1) ◽  
pp. 93-100 ◽  
Author(s):  
Vasco Conde ◽  
Giovanni Nico ◽  
Pedro Mateus ◽  
João Catalão ◽  
Anna Kontu ◽  
...  

Abstract In this work we present a methodology for the mapping of Snow Water Equivalent (SWE) temporal variations based on the Synthetic Aperture Radar (SAR) Interferometry technique and Sentinel-1 data. The shift in the interferometric phase caused by the refraction of the microwave signal penetrating the snow layer is isolated and exploited to generate maps of temporal variation of SWE from coherent SAR interferograms. The main advantage of the proposed methodology with respect to those based on the inversion of microwave SAR backscattering models is its simplicity and the reduced number of required in-situ SWE measurements. The maps, updated up to every 6 days, can attain a spatial resolution up to 20 m with sub-centimetre ΔSWE measurement accuracy in any weather and sun illumination condition. We present results obtained using the proposed methodology over a study area in Finland. These results are compared with in-situ measurements of ΔSWE, showing a reasonable match with a mean accuracy of about 6 mm.


Author(s):  
Prabhishek Singh ◽  
Raj Shree

This article introduces the concept, use and implementation of method noise in the field of synthetic aperture radar (SAR) image despeckling. Method noise has the capability to enhance the efficiency and performance of any despeckling algorithm. It is easy, efficient and enhanced way of improving the results. The difference between speckled image and despeckled image contains some residual image information which is due to the inefficiency of the denoising algorithm. This article will compare the results of some standard methods with and without the use of method noise and prove its efficiency and validity. It also shows its best use in different ways of denoising. The results will be compared on the basis of performance metrics like PSNR and SSIM. The concept of method noise is not restricted to only SAR images. It has vast usage and application. It can be used in any denoising procedure such as medical images, optical image etc. but this paper shows the experimental results only on the SAR images.


2013 ◽  
Vol 367 ◽  
pp. 280-285
Author(s):  
Jian Guo Hou ◽  
Yu Chu

In this paper, a novel method is proposed by combining of radar clinometry and interferometry to improve the accuracy of digital elevation model (DEM) reconstruction. In synthetic aperture radar (SAR) signal processing, the interferometry method uses a couple of high-coherence SAR complex images and the clinometry method uses only one. On one hand, interferometry-derived DEM is much more accurate in regions of higher coherence than the clinometry one. However, in regions of lower coherence, some pronounced errors are produced with the interferometry method due to phase filtering and unwrapping problems. On the other hand, the clinometry method can produce a more robust DEM result by using the intensity of SAR image. Therefore the clinometry-and interferometry-derived DEM is fused by introducing a user-defined weighting factor, where in regions of higher coherence, the DEM results with the interferometry method are remained, and in regions of lower coherence, the interferometry-derived DEM is updated with the clinometry-derived one. Finally, the experimental results with Envisat data show the effectiveness of our approach.


2011 ◽  
Vol 130-134 ◽  
pp. 2060-2063
Author(s):  
Hua Chao Hu ◽  
Xin Jia ◽  
Jin Liang Wu ◽  
Gui Ping Zhang ◽  
Yang Gao

A new kind of Synthetic Aperture Radar (SAR) jamming method is proposed: the 2-D interrupted-sampling repeater jamming. The fundamentals and implement of this jamming method are investigated. This jamming method can realize two-dimensional jamming in range and azimuth, and cause the SAR image ambiguous, and achieves the effect of multi-false targets. The research shows: both the suppression and deceptive jamming effect exist. Its validities are proved by the simulation.


2013 ◽  
Vol 30 (7) ◽  
pp. 1511-1526 ◽  
Author(s):  
G. Dibarboure ◽  
P. Y. Le Traon ◽  
N. Galin

Abstract Sea surface height (SSH) measurements provided by pulse-limited radar altimeters are one-dimensional profiles along the satellite's nadir track, with no information whatsoever in the cross-track direction. The anisotropy of resulting SSH profiles is the most limiting factor of mesoscale SSH maps that merge the 1D profiles. This paper explores the potential of the cross-track slope derived from the Cryosphere Satellite-2 (CryoSat-2)'s synthetic aperture radar interferometry (SARin) mode to increase the resolution of mesoscale fields in the cross-track direction. Through idealized 1D simulations, this study shows that it is possible to exploit the dual SARin measurement (cross-track slope and SSH profile) in order to constrain mesoscale mapping in the cross-track direction. An error-free SSH slope allows a single SARin instrument to recover almost as much SSH variance as two coordinated altimeters. Noise-corrupted slopes can also be exploited to improve the mapping, and a breakthrough is observed for SARin errors ranging from 1 to 5 μrad for 150-km-radius features in strong currents, and 0.1–0.5 μrad for global mesoscale. Although only limited experiments might be possible with the error level of current CryoSat-2 data, this paper shows the potential of the SAR interferometry technology to reduce the anisotropy of altimeter measurements if the SARin error is significantly reduced in the future, and in particular in the context of a prospective SARin demonstrator optimized for oceanography.


2020 ◽  
Vol 8 (1) ◽  
pp. 84-90
Author(s):  
R. Lalchhanhima ◽  
◽  
Debdatta Kandar ◽  
R. Chawngsangpuii ◽  
Vanlalmuansangi Khenglawt ◽  
...  

Fuzzy C-Means is an unsupervised clustering algorithm for the automatic clustering of data. Synthetic Aperture Radar Image Segmentation has been a challenging task because of the presence of speckle noise. Therefore the segmentation process can not directly rely on the intensity information alone but must consider several derived features in order to get satisfactory segmentation results. In this paper, it is attempted to use the fuzzy nature of classification for the purpose of unsupervised region segmentation in which FCM is employed. Different features are obtained by filtering of the image by using different spatial filters and are selected for segmentation criteria. The segmentation performance is determined by the accuracy compared with a different state of the art techniques proposed recently.


Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1643
Author(s):  
Ming Liu ◽  
Shichao Chen ◽  
Fugang Lu ◽  
Mengdao Xing ◽  
Jingbiao Wei

For target detection in complex scenes of synthetic aperture radar (SAR) images, the false alarms in the land areas are hard to eliminate, especially for the ones near the coastline. Focusing on the problem, an algorithm based on the fusion of multiscale superpixel segmentations is proposed in this paper. Firstly, the SAR images are partitioned by using different scales of superpixel segmentation. For the superpixels in each scale, the land-sea segmentation is achieved by judging their statistical properties. Then, the land-sea segmentation results obtained in each scale are combined with the result of the constant false alarm rate (CFAR) detector to eliminate the false alarms located on the land areas of the SAR image. In the end, to enhance the robustness of the proposed algorithm, the detection results obtained in different scales are fused together to realize the final target detection. Experimental results on real SAR images have verified the effectiveness of the proposed algorithm.


2011 ◽  
Vol 383-390 ◽  
pp. 4962-4966
Author(s):  
Ling Li ◽  
Guo Bin Jin ◽  
Shao Ping Huang ◽  
Xiao Peng

A novel method on frequency measurement based on improved TLS-ESPRIT (total least square estimation of signal parameters via rotational invariance techniques) is proposed in this paper with the research on fundamental frequency measurement in power system. TLS-ESPRIT is belong to subspace estimation in modern signal process. Noise is included in signal model, so it is independent on noise. But the same multi-poles cannot be taken when signal is in noise and based on TLS-ESPRIT. Multiple poles restoring is presented to take the true poles accurately. It is revealed that fundamental frequency is detected accurately in harmonics, interharmonics, noise and frequency fluctuations and better anti-noise ability in particular better adaptiveness on time varying signal in amplitude by simulation results.


2020 ◽  
Vol 12 (11) ◽  
pp. 1746
Author(s):  
Salman Ahmadi ◽  
Saeid Homayouni

In this paper, we propose a novel approach based on the active contours model for change detection from synthetic aperture radar (SAR) images. In order to increase the accuracy of the proposed approach, a new operator was introduced to generate a difference image from the before and after change images. Then, a new model of active contours was developed for accurately detecting changed regions from the difference image. The proposed model extracts the changed areas as a target feature from the difference image based on training data from changed and unchanged regions. In this research, we used the Otsu histogram thresholding method to produce the training data automatically. In addition, the training data were updated in the process of minimizing the energy function of the model. To evaluate the accuracy of the model, we applied the proposed method to three benchmark SAR data sets. The proposed model obtains 84.65%, 87.07%, and 96.26% of the Kappa coefficient for Yellow River Estuary, Bern, and Ottawa sample data sets, respectively. These results demonstrated the effectiveness of the proposed approach compared to other methods. Another advantage of the proposed model is its high speed in comparison to the conventional methods.


Sign in / Sign up

Export Citation Format

Share Document