scholarly journals Non-Contact Measurement of the Surface Displacement of a Slope Based on a Smart Binocular Vision System

Sensors ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 2890 ◽  
Author(s):  
Leping He ◽  
Jie Tan ◽  
Qijun Hu ◽  
Songsheng He ◽  
Qijie Cai ◽  
...  

The paper presents an intelligent real-time slope surface deformation monitoring system based on binocular stereo-vision. To adapt the system to field slope monitoring, a design scheme of concentric marking point is proposed. Techniques including Zernike moment edge extraction, the least squares method, and k-means clustering are used to design a sub-pixel precision localization method for marker images. This study is mostly focused on the tracking accuracy of objects in multi-frame images obtained from a binocular camera. For this purpose, the Upsampled Cross Correlation (UCC) sub-pixel template matching technique is employed to improve the spatial-temporal contextual (STC) target-tracking algorithm. As a result, the tracking accuracy is improved to the sub-pixel level while keeping the STC tracking algorithm at high speed. The performance of the proposed vision monitoring system has been well verified through laboratory tests.

Author(s):  
Zhipeng Li ◽  
Xiaolan Li ◽  
Ming Shi ◽  
Wenli Song ◽  
Guowei Zhao ◽  
...  

Snowboarding is a kind of sport that takes snowboarding as a tool, swivels and glides rapidly on the specified slope line, and completes all kinds of difficult actions in the air. Because the sport is in the state of high-speed movement, it is difficult to direct guidance during the sport, which is not conducive to athletes to find problems and correct them, so it is necessary to track the target track of snowboarding. The target tracking algorithm is the main solution to this task, but there are many problems in the existing target tracking algorithm that have not been solved, especially the target tracking accuracy in complex scenes is insufficient. Therefore, based on the advantages of the mean shift algorithm and Kalman algorithm, this paper proposes a better tracking algorithm for snowboard moving targets. In the method designed in this paper, in order to solve the problem, a multi-algorithm fusion target tracking algorithm is proposed. Firstly, the SIFT feature algorithm is used for rough matching to determine the fuzzy position of the target. Then, the good performance of the mean shift algorithm is used to further match the target position and determine the exact position of the target. Finally, the Kalman filtering algorithm is used to further improve the target tracking algorithm to solve the template trajectory prediction under occlusion and achieve the target trajectory tracking algorithm design of snowboarding.


2014 ◽  
Vol 608-609 ◽  
pp. 555-558
Author(s):  
Na Zhu

Binocular vision system can be widely used in CNC machine tools chatter monitoring, due to its simple system and automatic measurement function. Traditional registration method cannot balance the contradiction between precision and speed of registration; restrict its application in high speed monitoring system. So based on traditional feature point registration method, it proposes a new method to obtain more accurate matching feature points by using complexity distribution feature of image region to determine the distribution of feature region and the bidirectional similarity and triangle similar method, which realize quick registration. From the simulation and implementation effect perspective, this method is feasible for the image registration in high-speed monitoring system.


2015 ◽  
Vol 27 (5) ◽  
pp. 543-551 ◽  
Author(s):  
Akio Namiki ◽  
◽  
Fumiyasu Takahashi

<div class=""abs_img""> <img src=""[disp_template_path]/JRM/abst-image/00270005/11.jpg"" width=""300"" /> Defensive motion against attack</div> In this paper, we discuss how to generate defensive motions for a sword-fighting robot based on quick detection of the opposite player’s initial motions. Our sword-fighting robot system, which has a stereo high-speed vision system, recognizes both the position of a human player and that of the sword grasped by the robot’s hand. Further, it detects the moment when the human player initiates a move using ChangeFinder, which is a method of detecting change points. Next, using least squares method, it predicts the possible trajectories of the sword of the human player from the moment when the attack starts. Finally, it judges the type of the attack and generates an appropriate defensive motion. The effectiveness of the proposed algorithm is verified by experimental results. </span>


2021 ◽  
Author(s):  
Zhujiang Wang ◽  
Zimo Wang ◽  
Woo-Hyun Ko ◽  
Ashif Sikandar Iquebal ◽  
Vu Nguyen ◽  
...  

Abstract We introduce an autonomous laser kirigami technique, a novel custom manufacturing machine system which functions somewhat similar to a photocopier. This technique is capable of creating functional freeform shell structures using cutting and folding (kirigami) operations on sheet precursors. Conventional laser kirigami techniques are operated manually and rely heavily on precise calibrations. However, it is unrealistic to design and plan out the process (open loop) to realize arbitrary geometric features from a wide variety of materials. In our work, we develop and demonstrate a completely autonomous system, which is composed of a laser system, a 4-axis robotic arm, a real-time vision-based surface deformation monitoring system, and an associated control system. The laser system is based on the Lasersaur, which is a 120-Watt CO2 open source laser cutter. The robotic arm is employed to precisely adjust the distance between a workpiece and the laser lens so that a focused and defocused laser beam can be used to cut and fold the workpiece respectively. The four-axis robotic arm provides flexibility for expanding the limits of possible shapes, compared to conventional laser machine setups where the workpiece is fixed on rigid holders. The real-time vision-based surface deformation monitoring system is composed of four low-cost cameras, an integrated AI-assisted algorithm, and the sensors (detachable planar markers) mounted on the polymer-based sheet precursors, and allows real-time monitoring of the sheet forming process and geometric evolution with a geometric feature estimation error less than 5 % and delay time around 100ms. The developed control system manages the laser power, the laser scanning speed, the motion of the robotic arm based on the designed plan as well as the close-loop feedback provided by the vision-based surface deformation monitoring system. This cyber-physical kirigami platform can operate a sequence of cutting and folding processes in order to create kirigami objects. Hence, complicated kirigami design products with various different polygonal structures can be realized by undergoing sequential designed laser cuts, and bends (at any folding angles within designed geometric tolerance) using this autonomous kirigami platform.


Sensors ◽  
2018 ◽  
Vol 18 (11) ◽  
pp. 4043 ◽  
Author(s):  
Ihsan Ullah ◽  
Muhammad Qureshi ◽  
Uzair Khan ◽  
Sufyan Memon ◽  
Yifang Shi ◽  
...  

A localization and tracking algorithm for an early-warning tracking system based on the information fusion of Infrared (IR) sensor and Laser Detection and Ranging (LADAR) is proposed. The proposed Kalman filter scheme incorporates Out-of-Sequence Measurements (OOSMs) to address long-range, high-speed incoming targets to be tracked by networked Remote Observation Sites (ROS) in cluttered environments. The Rauch–Tung–Striebel (RTS) fixed lag smoothing algorithm is employed in the proposed technique to further improve tracking accuracy, which, in turn, is used for target profiling and efficient filter initialization at the targeted platform. This efficient initialization increases the probability of target engagement by increasing the distance at which it can be effectively engaged. The increased target engagement range also reduces risk of any damage from debris of the engaged target. Performance of the proposed target localization algorithm with OOSM and RTS smoothing is evaluated in terms of root mean square error (RMSE) for both position and velocity, which accurately depicts the improved performance of the proposed algorithm in comparison with existing retrodiction-based OOSM filtering algorithms. The effects of assisted target state initialization at the targeted platform are also evaluated in terms of Time to Impact (TTI) and true track retention, which also depict the advantage of the proposed strategy.


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Svenja Ipsen ◽  
Sven Böttger ◽  
Holger Schwegmann ◽  
Floris Ernst

AbstractUltrasound (US) imaging, in contrast to other image guidance techniques, offers the distinct advantage of providing volumetric image data in real-time (4D) without using ionizing radiation. The goal of this study was to perform the first quantitative comparison of three different 4D US systems with fast matrix array probes and real-time data streaming regarding their target tracking accuracy and system latency. Sinusoidal motion of varying amplitudes and frequencies was used to simulate breathing motion with a robotic arm and a static US phantom. US volumes and robot positions were acquired online and stored for retrospective analysis. A template matching approach was used for target localization in the US data. Target motion measured in US was compared to the reference trajectory performed by the robot to determine localization accuracy and system latency. Using the robotic setup, all investigated 4D US systems could detect a moving target with sub-millimeter accuracy. However, especially high system latency increased tracking errors substantially and should be compensated with prediction algorithms for respiratory motion compensation.


2021 ◽  
Vol 434 ◽  
pp. 268-284
Author(s):  
Muxi Jiang ◽  
Rui Li ◽  
Qisheng Liu ◽  
Yingjing Shi ◽  
Esteban Tlelo-Cuautle

2021 ◽  
Vol 10 (3) ◽  
pp. 119
Author(s):  
Hakan A. Nefeslioglu ◽  
Beste Tavus ◽  
Melahat Er ◽  
Gamze Ertugrul ◽  
Aybuke Ozdemir ◽  
...  

Suitable route determination for linear engineering structures is a fundamental problem in engineering geology. Rapid evaluation of alternative routes is essential, and novel approaches are indispensable. This study aims to integrate various InSAR (Interferometric Synthetic Aperture Radar) techniques for sinkhole susceptibility mapping in the Kirikkale-Delice Region of Turkey, in which sinkhole formations have been observed in evaporitic units and a high-speed train railway route has been planned. Nine months (2019–2020) of ground deformations were determined using data from the European Space Agency’s (ESA) Sentinel-1A/1B satellites. A sinkhole inventory was prepared manually using satellite optical imagery and employed in an ANN (Artificial Neural Network) model with topographic conditioning factors derived from InSAR digital elevation models (DEMs) and morphological lineaments. The results indicate that high deformation areas on the vertical displacement map and sinkhole-prone areas on the sinkhole susceptibility map (SSM) almost coincide. InSAR techniques are useful for long-term deformation monitoring and can be successfully associated in sinkhole susceptibility mapping using an ANN. Continuous monitoring is recommended for existing sinkholes and highly susceptible areas, and SSMs should be updated with new results. Up-to-date SSMs are crucial for the route selection, planning, and construction of important transportation elements, as well as settlement site selection, in such regions.


Sign in / Sign up

Export Citation Format

Share Document