scholarly journals A Coalitional Formation Game for Physical Layer Security of Cooperative Compressive Sensing Multi-Relay Networks

Sensors ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 2942
Author(s):  
Jialun Li ◽  
Shuai Chang ◽  
Xiaomei Fu ◽  
Liang Zhang ◽  
Yishan Su ◽  
...  

Cooperative relaying is an effective technology to improve the capacity of physical-layer security, in which the relay helps forward the received signal to the destination. In this paper, a cooperative compressive sensing and amplify-and-forward (CCS-AF) scheme, which combines the compressive sensing theory and amplify-and-forward strategy, is proposed to increase the secrecy capacity. To optimize the secrecy performance, a coalition formation algorithm based on coalitional game theory of optimal relay selection is proposed to maximize the secrecy capacity. Different to maximizing the individual utility based on the traditional pareto order, the max-coalition order rule is newly defined to guide the coalitional formation. Simulation results indicate that with the proposed algorithm, part of the relays could form a coalition to forward the information and the proposed algorithm could significantly improve the secrecy capacity of cooperative multi-relay networks.

2020 ◽  
Vol 10 (2) ◽  
pp. 9-17
Author(s):  
Tuan Nhu Nguyen

Abstract— To secure communication from the sender to the receiver in wireless networks, cryptographic algorithms are usually used to encrypt data at the upper layers of a multi-tiered transmission model. Another emerging trend in the security of data transmitted over wireless networks is the physical layer security based on beamforming and interference fading  communication technology and not using cryptographic algorithms. This trend has attracted increasing concerns from both academia and industry. This paper addresses how physical layer security can protect secret data compare with the traditional cryptographic encryption and which is the better cooperative relaying scheme with the state of the art approached methods in wireless relaying beamforming network.Tóm tắt— Việc bảo mật truyền thông vô tuyến từ nơi gửi đến nơi nhận thường sử dụng các thuật toán mật mã để mã hoá dữ liệu tại các tầng phía trên trong mô hình phân lớp. Một xu hướng khác đang được quan tâm rộng rãi là bảo mật tầng vật lý dựa trên kỹ thuật truyền tin beamforming và kỹ thuật tương tác fading kênh chủ động. Xu hướng này hiện đang được thu hút cả trong giới công nghiệp và nghiên cứu. Đóng góp của bài báo này là làm rõ khả năng bảo mật tầng vật lý và so sách chúng với phương pháp bảo mật dùng kỹ thuật mật mã truyền thống. Bài báo cũng so sánh hai kỹ thuật chuyển tiếp được sử dụng chính trong bảo mật tầng vật lý cho mạng vô tuyến chuyển tiếp là Amplify-and-Forward và Decode-and-Forward.


2019 ◽  
Vol 2019 ◽  
pp. 1-7 ◽  
Author(s):  
Lei Pan ◽  
Zan Li ◽  
Zhengyuan Wang ◽  
Fenggan Zhang

In this paper, we investigate the physical layer security of cooperative two-way relay transmission systems using the amplify-and-forward (AF) protocol in the presence of an eavesdropper. A joint relay selection (RS) and power allocation (PA) scheme is proposed to protect the source-destination transmission against the eavesdropper. However, due to the high computational complexity, it is difficult to obtain the optimal solution for the system secrecy rate. Fortunately, an approximate optimal solution by using the particle swarm optimization (PSO) algorithm is derived. In the simulations, we use random relay selection with optimal power allocation (RRS-OPA) and equal power allocation with optimal relay selection (EPA-ORS) as benchmark schemes to verify the effectiveness of the proposed method. The simulation results show that the proposed method outperforms both RRS-OPA and EPA-ORS and significantly improves the system performance with low complexity.


2021 ◽  
Author(s):  
Wided Hadj Alouane

Abstract In this paper, we investigate the physical layer security in cooperative non-orthogonal multiple access (NOMA) networks over Nakagamim fading channels. Both amplify-and-forward (AF) and decode-and-forward (DF) protocols are studied. More particularly, closed-form exact and asymptotic expressions for strictly positive secrecy capacity are provided considering NOMA-AF and NOMA-DF relaying systems. Numerical results are presented to justify the accuracy of the obtained theoretical analysis. These results show that NOMA-AF and NOMA-DF relaying networks have a similar secrecy performance.


2021 ◽  
pp. 1-28
Author(s):  
Vinay Bankey ◽  
Prabhat K. Upadhyay ◽  
Daniel Benevides da Costa

Sign in / Sign up

Export Citation Format

Share Document