scholarly journals A Blockchain Implementation Prototype for the Electronic Open Source Traceability of Wood along the Whole Supply Chain

Sensors ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 3133 ◽  
Author(s):  
Simone Figorilli ◽  
Francesca Antonucci ◽  
Corrado Costa ◽  
Federico Pallottino ◽  
Luciano Raso ◽  
...  

This is the first work to introduce the use of blockchain technology for the electronic traceability of wood from standing tree to final user. Infotracing integrates the information related to the product quality with those related to the traceability [physical and digital documents (Radio Frequency IDentification—RFID—architecture)] within an online information system whose steps (transactions) can be made safe to evidence of alteration through the blockchain. This is a decentralized and distributed ledger that keeps records of digital transactions in such a way that makes them accessible and visible to multiple participants in a network while keeping them secure without the need of a centralized certification organism. This work implements a blockchain architecture within the wood chain electronic traceability. The infotracing system is based on RFID sensors and open source technology. The entire forest wood supply chain was simulated from standing trees to the final product passing through tree cutting and sawmill process. Different kinds of Internet of Things (IoT) open source devices and tags were used, and a specific app aiming the forest operations was engineered to collect and store in a centralized database information (e.g., species, date, position, dendrometric and commercial information).

2008 ◽  
Vol 3 (1) ◽  
pp. 55-70
Author(s):  
Dharmaraj Veeramani ◽  
Jenny Tang ◽  
Alfonso Gutierrez

Radio frequency identification (RFID) is a rapidly evolving technology for automatic identification and data capture of products. One of the barriers to the adoption of RFID by organizations is difficulty in assessing the potential return on investment (ROI). Much of the research and analyses to date of ROI in implementing RFID technology have focused on the benefits to the retailer. There is a lack of a good understanding of the impact of RFID at upper echelons of the supply chain. In this paper, we present a framework and models for assessing the value of RFID implementation by tier-one suppliers to major retailers. We also discuss our real-life application of this framework to one of Wal-Mart’s top 100 suppliers


2011 ◽  
Vol 179-180 ◽  
pp. 949-954 ◽  
Author(s):  
Xiao Hua Cao ◽  
Juan Wan

Internal material supply management for manufacturing workshops usually suffers from message delay and abnormal logistics events, which seriously holdback the reactivity capability of production system. As a rapid, real-time, accurate information collection tools, Radio Frequency identification (RFID) technology has become an important driver in the production and logistics activities. This paper presents a new idea that uses RFID technology to monitor real-timely the abnormal logistics events which occur at each work space in the internal material supply chain and proposes its construction method in details. With the experimental verification of prototype system, the proposed RFID-based monitoring system can find in time the abnormal logistics events of internal material supply chain and largely improve the circulation velocity of production logistics, and reduce the rate of mistake which frequently occurred in traditional material management based on Kanban.


2013 ◽  
Vol 93 (1) ◽  
pp. 23-33 ◽  
Author(s):  
P. Barge ◽  
P. Gay ◽  
V. Merlino ◽  
C. Tortia

Barge, P., Gay, P., Merlino, V. and Tortia, C. 2013. Radio frequency identification technologies for livestock management and meat supply chain traceability. Can. J. Anim. Sci. 93: 23–33. Animal electronic identification could be exploited by farmers as an interesting opportunity to increase the efficiency of herd management and traceability. Although radio frequency identification (RFID) solutions for animal identification have already been envisaged, the integration of a RFID traceability system at farm level has to be carried out carefully, considering different aspects (farm type, number and species of animals, barn structure). The tag persistence on the animal after application, the tag-to-tag collisions in the case of many animals contemporarily present in the reading area of the same antenna and the barn layout play determinant roles in system reliability. The goal of this paper is to evaluate the RFID identification system performance and determine the best practice to apply these devices in livestock management. RFID systems were tested both in laboratory, on the farm and in slaughterhouses for the implementation of a traceability system with automatic animal data capture. For this purpose a complete system for animal identification and tracking, accomplishing regulatory compliance as well as supply chain management requirements, has been developed and is described in the paper. Results were encouraging for identification of calves both in farms and slaughterhouses, while in swine breeding, identification was critical for small piglets. In this case, the design of a RFID gate where tag-to-tag collisions are avoided should be envisaged.


IoT (Internet of Things) made headway from Machine to Machine communication without human intrusion for number of machines to connect with the aid of network. There is esteem; by 2020 there will be 26 times more connected things than people. Hence, the concern of security rises along with the high installments. The BlockChain Technology takes place of all central entities, which is peer to peer communication with the distributed network. In this paper, two Arduino boards as nodes and a Raspberry Pi as server are to be configured to connect to the Wi-Fi using ESP8266(node mc). To make data transmission from the two nodes to server, integration of temperature and humidity sensor in one node and RFID (Radio Frequency Identification) reader in other node is to be done. Data should be in the form of blocks and integration of data is in the form of a chain, forming it a Blockchain. All the blocks are linked in the chain manner of which the current hash of the previous block must match with the previous hash of the next block. Then only the blocks of data are secured. While receiving data every time from nodes to server, the previous hash is to be checked such that the arrival of the information is being verified to know if it’s really genuine. If the cryptographic hash does not match then data manipulation is happened. So, in this paper, we will see, along with how practically the security is highly offered by the blockchain technology and how can we easily identify if the data has been tampered along the way it reaches to us. Henceforth, we will found a way of application to secure our IoT data without any regrets in this paper.


1970 ◽  
Vol 21 (1) ◽  
pp. 41-48 ◽  
Author(s):  
Juraj Vaculik ◽  
Ivan Michalek ◽  
Peter Kolarovszki

The paper deals with RFID (Radio Frequency Identification)implementation and utilization within supply chain managementand also includes the economic feasibility of rollingout RFID. The members of the supply chain networks- suppliers,manufacturers and distributors - will operate independentlyfrom one another and according to their own agendas.This type of unmanaged network, howeve1; results in inefficiencies.The manufacturer might have a goal of maximizing productionin order to minimize unit costs. Clearly, all members ofthe supply chain stand to gain by coordinating their efforts toimprove efficiency and overall supply chain performance. Thisarticle is divided into three parts: Supply chain, Economic feasibilityof rolling out RFID and Processes of Supply chain management.


2008 ◽  
Vol 07 (01) ◽  
pp. 9-14 ◽  
Author(s):  
Selwyn Piramuthu

Radio Frequency Identification (RFID) is promising, as a technique, to enable tracking of essential information about objects as they pass through supply chains. Information thus tracked can be utilised to efficiently operate the supply chain. Effective management of the supply chain translates to huge competitive advantage for the firms involved. Among several issues that impede seamless integration of RFID tags in a supply chain, one of the problems encountered while reading RFID tags is that of collision, which occurs when multiple tags transmit data to the same receiver slot. Data loss due to collision necessitates re-transmission of lost data. We consider this problem when Framed Slotted ALOHA protocol is used. Using machine learning, we adaptively configure the number of slots per frame to reduce the number of collisions while improving throughput.


2008 ◽  
pp. 1184-1191
Author(s):  
Jan Owens ◽  
Suresh Chalasani ◽  
Jayavel Sounderpandian

The use of Radio Frequency Identification (RFID) is becoming prevalent in supply chains, with large corporations such as Wal-Mart, Tesco, and the Department of Defense phasing in RFID requirements on their suppliers. The implementation of RFID can necessitate changes in the existing data models and will add to the demand for processing and storage capacities. This article discusses the implications of the RFID technology on data processing in supply chains.


Sign in / Sign up

Export Citation Format

Share Document