scholarly journals Tip-Enhanced Raman Spectroscopy with High-Order Fiber Vector Beam Excitation

Sensors ◽  
2018 ◽  
Vol 18 (11) ◽  
pp. 3841 ◽  
Author(s):  
Fanfan Lu ◽  
Tengxiang Huang ◽  
Lei Han ◽  
Haisheng Su ◽  
Heng Wang ◽  
...  

We investigated tip-enhanced Raman spectra excited by high-order fiber vector beams. Theoretical analysis shows that the high-order fiber vector beams have stronger longitudinal electric field components than linearly polarized light under tight focusing conditions. By introducing the high-order fiber vector beams and the linearly polarized beam from a fiber vector beam generator based on an electrically-controlled acoustically-induced fiber grating into a top-illumination tip-enhanced Raman spectroscopy (TERS) setup, the tip-enhanced Raman signal produced by the high-order fiber vector beams was 1.6 times as strong as that produced by the linearly polarized light. This result suggests a new type of efficient excitation light beams for TERS.

2013 ◽  
Vol 21 (21) ◽  
pp. 25271 ◽  
Author(s):  
Nastaran Kazemi-Zanjani ◽  
Sylvain Vedraine ◽  
François Lagugné-Labarthet

Nanomaterials ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1718
Author(s):  
Qian Kong ◽  
Manna Gu ◽  
Xiangyu Zeng ◽  
Rui Sun ◽  
Yuqin Zhang ◽  
...  

Manipulation of multichannel vector beams (VBs) with metasurfaces is an important topic and holds potential applications in information technology. In this paper, we propose a novel metasurface for the generation of dual VBs, which is composed of orthogonal slit pairs arranged on multiple groups of combined semicircular rings (CSRs). A group of CSRs include a right-shifted set and a left-shifted set of semicircular rings, and each set of semicircular rings has two halves of circles with different radii, sharing the same shifted center. Under the illumination of linearly polarized light, the two shifted sets of semicircular rings generate the two VBs at the shifted center positions on the observation plane. The slit units of each set are designed with independent rotation order and initial orientation angle. By adjusting the linear polarization of illumination, both two VBs with their orders and polarization states are independently controlled simultaneously. The principle and design are demonstrated by the finite-difference time domain (FDTD) simulation. The work is of significance for miniatured devices of VB generators and for related applications.


Author(s):  
Arpan Dutta ◽  
Tarmo Nuutinen ◽  
Khairul Alam ◽  
Antti Matikainen ◽  
Peng Li ◽  
...  

Abstract Plasmonic nanostructures are widely utilized in surface-enhanced Raman spectroscopy (SERS) from ultraviolet to near-infrared applications. Periodic nanoplasmonic systems such as plasmonic gratings are of great interest as SERS-active substrates due to their strong polarization dependence and ease of fabrication. In this work, we modelled a silver grating that manifests a subradiant plasmonic resonance as a dip in its reflectivity with significant near-field enhancement only for transverse-magnetic (TM) polarization of light. We investigated the role of its fill factor, commonly defined as a ratio between the width of the grating groove and the grating period, on the SERS enhancement. We designed multiple gratings having different fill factors using finite-difference time-domain (FDTD) simulations to incorporate different degrees of spectral detunings in their reflection dips from our Raman excitation (488 nm). Our numerical studies suggested that by tuning the spectral position of the optical resonance of the grating, via modifying their fill factor, we could optimize the achievable SERS enhancement. Moreover, by changing the polarization of the excitation light from transverse-magnetic to transverse-electric, we can disable the optical resonance of the gratings resulting in negligible SERS performance. To verify this, we fabricated and optically characterized the modelled gratings and ensured the presence of the desired detunings in their optical responses. Our Raman analysis on riboflavin confirmed that the higher overlap between the grating resonance and the intended Raman excitation yields stronger Raman enhancement only for TM polarized light. Our findings provide insight on the development of fabrication-friendly plasmonic gratings for optimal intensification of the Raman signal with an extra degree of control through the polarization of the excitation light. This feature enables studying Raman signal of exactly the same molecules with and without electromagnetic SERS enhancements, just by changing the polarization of the excitation, and thereby permits detailed studies on the selection rules and the chemical enhancements possibly involved in SERS.


Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3024
Author(s):  
Xiaorong Ren ◽  
Manna Gu ◽  
Xiangyu Zeng ◽  
Rui Sun ◽  
Yuqin Zhang ◽  
...  

The manipulations of nanoscale multi-channel vector beams (VBs) by metasurfaces hold potential applications in various important fields. In this paper, the metasurface with two sets of nanoslits arranged on elliptic curves was proposed to generate the dual-channel focused vector beams (FVBs). Each set of nanoslits was composed of the in-phase and the out-of-phase groups of nanoslits to introduce the constructive interference and destructive interference of the output light field of the nanoslits, focusing the converted spin component and eliminating the incident spin component at the focal point. The two sets of nanoslits for the channels at the two focal points were interleaved on the same ellipses, and by setting their parameters independently, the FVBs in the two channels are generated under illumination of linearly polarized light, while their orders and polarization states of FVBs were controlled independently. The generation of the FVBs with the designed metasurfaces was demonstrated by the finite-difference time domain (FDTD) simulations and by the experimental verifications. The work in this paper is of great significance for the generation of miniaturized multi-channel VBs and for broadening the applications of metasurfaces.


2008 ◽  
Vol 62 (11) ◽  
pp. 1173-1179 ◽  
Author(s):  
Zachary D. Schultz ◽  
Stephan J. Stranick ◽  
Ira W. Levin

Results are presented illustrating the use of tip-enhanced Raman spectroscopy (TERS) and imaging in a top-illumination geometry. A radially polarized beam is used to generate an electric field component in the direction of beam propagation, normal to the surface, resulting in a 5× increased enhancement compared to a linearly polarized beam. This multiplicative enhancement facilitates a discrimination of the near-field signal from the far-field Raman background. The top illumination configuration facilitates the application of TERS for investigating molecules on a variety of surfaces, such as Au, glass, and Si. The near-field Raman spectra of Si(100), rhodamine B, brilliant cresyl blue, and single wall carbon nanotubes are presented. Sufficient enhancement is obtained to permit a sub-diffraction-limited resolution Raman imaging of the surface distribution of large bundles of carbon nanotubes of various diameters.


2015 ◽  
Vol 17 (33) ◽  
pp. 21315-21322 ◽  
Author(s):  
Farshid Pashaee ◽  
Faranak Sharifi ◽  
Giovanni Fanchini ◽  
François Lagugné-Labarthet

TERS was used to investigate the graphene-like platelets in gap mode geometry using radially and linearly polarized excitation.


Author(s):  
Rong Zhou ◽  
Li Chen ◽  
Ting Kong ◽  
Huan Chen ◽  
Zhenglong Zhang ◽  
...  

2008 ◽  
Author(s):  
K. J. Yi ◽  
X. N. He ◽  
W. Q. Yang ◽  
Y. S. Zhou ◽  
W. Xiong ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document