scholarly journals Generation of vector beams using spatial variation nanoslits with linearly polarized light illumination

2018 ◽  
Vol 26 (18) ◽  
pp. 24145 ◽  
Author(s):  
Qi Zhang ◽  
Han Wang ◽  
Lixia Liu ◽  
Shuyun Teng
Nanomaterials ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1718
Author(s):  
Qian Kong ◽  
Manna Gu ◽  
Xiangyu Zeng ◽  
Rui Sun ◽  
Yuqin Zhang ◽  
...  

Manipulation of multichannel vector beams (VBs) with metasurfaces is an important topic and holds potential applications in information technology. In this paper, we propose a novel metasurface for the generation of dual VBs, which is composed of orthogonal slit pairs arranged on multiple groups of combined semicircular rings (CSRs). A group of CSRs include a right-shifted set and a left-shifted set of semicircular rings, and each set of semicircular rings has two halves of circles with different radii, sharing the same shifted center. Under the illumination of linearly polarized light, the two shifted sets of semicircular rings generate the two VBs at the shifted center positions on the observation plane. The slit units of each set are designed with independent rotation order and initial orientation angle. By adjusting the linear polarization of illumination, both two VBs with their orders and polarization states are independently controlled simultaneously. The principle and design are demonstrated by the finite-difference time domain (FDTD) simulation. The work is of significance for miniatured devices of VB generators and for related applications.


2018 ◽  
Vol 12 (01) ◽  
pp. 1 ◽  
Author(s):  
Qi Zhang ◽  
Peiyu Li ◽  
Yanying Li ◽  
Han Wang ◽  
Lixia Liu ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3024
Author(s):  
Xiaorong Ren ◽  
Manna Gu ◽  
Xiangyu Zeng ◽  
Rui Sun ◽  
Yuqin Zhang ◽  
...  

The manipulations of nanoscale multi-channel vector beams (VBs) by metasurfaces hold potential applications in various important fields. In this paper, the metasurface with two sets of nanoslits arranged on elliptic curves was proposed to generate the dual-channel focused vector beams (FVBs). Each set of nanoslits was composed of the in-phase and the out-of-phase groups of nanoslits to introduce the constructive interference and destructive interference of the output light field of the nanoslits, focusing the converted spin component and eliminating the incident spin component at the focal point. The two sets of nanoslits for the channels at the two focal points were interleaved on the same ellipses, and by setting their parameters independently, the FVBs in the two channels are generated under illumination of linearly polarized light, while their orders and polarization states of FVBs were controlled independently. The generation of the FVBs with the designed metasurfaces was demonstrated by the finite-difference time domain (FDTD) simulations and by the experimental verifications. The work in this paper is of great significance for the generation of miniaturized multi-channel VBs and for broadening the applications of metasurfaces.


1958 ◽  
Vol 35 (3) ◽  
pp. 487-493 ◽  
Author(s):  
RICHARD BAINBRIDGE ◽  
TALBOT H. WATERMAN

1. The influence of the turbidity of the medium on the previously reported directional orientation of the littoral mysid, Mysidium gracile, swimming in a vertical beam of linearly polarized light, has been studied. 2. In carefully clarified sea water the slight preference shown for orientation perpendicular to the polarization plane was not statistically significant. 3. In water made turbid with known amounts of suspended yeast a statistically significant preference for swimming perpendicular to the plane of polarization appeared. 4. This response to the pattern of plarized light illumination appears strontger in highly turbid water than it is in water of moderate turbidity. 5. The mechanism of the observed response seems largely depedent upon discrimination of intensity differences in the light scattered horizontally. 6. These results emphasize the need for careful consideration of the scattering and reflexion artifacts almost invariably present with linearly polarized light.


Sensors ◽  
2018 ◽  
Vol 18 (11) ◽  
pp. 3841 ◽  
Author(s):  
Fanfan Lu ◽  
Tengxiang Huang ◽  
Lei Han ◽  
Haisheng Su ◽  
Heng Wang ◽  
...  

We investigated tip-enhanced Raman spectra excited by high-order fiber vector beams. Theoretical analysis shows that the high-order fiber vector beams have stronger longitudinal electric field components than linearly polarized light under tight focusing conditions. By introducing the high-order fiber vector beams and the linearly polarized beam from a fiber vector beam generator based on an electrically-controlled acoustically-induced fiber grating into a top-illumination tip-enhanced Raman spectroscopy (TERS) setup, the tip-enhanced Raman signal produced by the high-order fiber vector beams was 1.6 times as strong as that produced by the linearly polarized light. This result suggests a new type of efficient excitation light beams for TERS.


2020 ◽  
Vol 126 (9) ◽  
Author(s):  
Joachim Jelken ◽  
Carsten Henkel ◽  
Svetlana Santer

Abstract We study the peculiar response of photo-sensitive polymer films irradiated with a certain type of interference pattern where one interfering beam is S-polarized, while the second one is P-polarized. The polymer film, although in a glassy state, deforms following the local polarization distribution of the incident light, and a surface relief grating (SRG) appears whose period is half the optical one. All other types of interference patterns result in the matching of both periods. The topographical response is triggered by the alignment of photo-responsive azobenzene containing polymer side chains orthogonal to the local electrical field, resulting in a bulk birefringence grating (BBG). We investigate the process of dual grating formation (SRG and BBG) in a polymer film utilizing a dedicated set-up that combines probe beam diffraction and atomic force microscopy (AFM) measurements, and permits acquiring in situ and in real-time information about changes in local topography and birefringence. We find that the SRG maxima appear at the positions of linearly polarized light (tilted by 45° relative to the grating vector), causing the formation of the half-period topography. This permits to inscribe symmetric and asymmetric topography gratings with sub-wavelength period, while changing only slightly the polarization of one of the interfering beams. We demonstrate an easy generation of sawtooth profiles (blazed gratings) with adjustable shape. With these results, we have taken a significant step in understanding the photo-induced deformation of azo-polymer films.


2005 ◽  
Vol 744-747 ◽  
pp. 307-313 ◽  
Author(s):  
D. Bauman ◽  
E. Chrzumnicka ◽  
E. Mykowska ◽  
M. Szybowicz ◽  
N. Grzelczak

Sign in / Sign up

Export Citation Format

Share Document