scholarly journals Virtual Torque Sensor for Low-Cost RC Servo Motors Based on Dynamic System Identification Utilizing Parametric Constraints

Sensors ◽  
2018 ◽  
Vol 18 (11) ◽  
pp. 3856 ◽  
Author(s):  
Yoonkyu Hwang ◽  
Yuki Minami ◽  
Masato Ishikawa

We propose a novel virtual torque sensor for commercial low-cost radio-controlled (RC) servo motors. The virtual torque sensor has played an important role for conventional robots. It has been used for torque-required control applications such as human–robot interaction and under-actuated robots. However, most virtual torque sensors are based on the inversion of actuators or robot dynamics with the assumption that entire dynamics are known. This is not applicable to the RC servo motors that have unknown control structures. As RC servo motors enable researchers and hobbyists to create lightweight but high performance robots in an easy and cost-effective manner, the development of a virtual torque sensor for these motors is necessary. In this study, we propose a design method of a virtual torque sensor for RC servo motors. First, the virtual sensor is derived mathematically based on internal dynamic models with parametric constraints and compared to the conventional model. Second, a dedicated system identification method is developed for the proposed virtual sensor to implement the sensor in actual experiments. Finally, we compare experimental results with the measurements obtained by an actual sensor.

2013 ◽  
Vol 51 ◽  
pp. 124-135 ◽  
Author(s):  
Yucai Zhu ◽  
Rohit Patwardhan ◽  
Stephen B. Wagner ◽  
Jun Zhao

Polymers ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 893 ◽  
Author(s):  
Jieyu Zhang ◽  
Yi Zhang ◽  
Jianzhang Li ◽  
Qiang Gao

The objective of this study is to use wheat flour (WF) and hydroxymethyl melamine prepolymer (HMP) to develop a low cost, highly water-resistant, starch-based bio-adhesive for plywood fabrication. Three-layer plywood was fabricated using the resultant adhesive, and the wet shear strength of the plywood samples was measured under various conditions. After determining that water resistance was significantly improved with the addition of HMP, we evaluated the physical characteristics of the starch-based adhesive and functional groups and analyzed the thermal stability and fracture surface of the cured adhesive samples. Results showed that by adding 20 wt.% HMP into WF adhesive, the sedimentation volume in the resultant adhesive decreased by 11.3%, indicating that the increase of crosslinking in the structure of the adhesives increased the bond strength, and the wet shear strength of the resultant plywood in 63 °C water improved by 375% when compared with the WF adhesive. After increasing the addition of HMP to 40 wt.%, the wet shear strength of the resultant plywood in 100 °C water changed from 0 MPa to 0.71 MPa, which meets the exterior use plywood requirement. This water resistance and bond strength improvement resulted from (1) HMP reacting with functions in WF and forming a crosslinking structure to prevent moisture intrusion; and (2) HMP self-crosslinking and combining with crosslinked WF to form a microphase separation crosslinking structure, which improved both the crosslinking density and the toughness of the adhesive, and subsequently, the adhesive’s bond performance. In addition, the microphase separation crosslinking structure had better thermostability and created a compact ductile fracture surface, which further improved the bond performance of the adhesive. Thus, using a prepolymer to form a microphase separation crosslinking structure within the adhesive improves the rigidity, toughness, and water resistance of the material in a practical and cost-effective manner.


Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 149
Author(s):  
Zhengyong Liu ◽  
Youdong Chen ◽  
Henan Song ◽  
Zhenming Xing ◽  
Hongmiao Tian ◽  
...  

The development of “large display, high performance and low cost” in the FPD industry demands glass substrates to be “larger and thinner”. Therefore, the requirements of handling robots are developing in the direction of large scale, high speed, and high precision. This paper presents a novel construction of a glass substrate handling robot, which has a 2.5 m/s travelling speed. It innovatively adopts bionic end-suction technology to grasp the glass substrate more firmly. The structure design is divided into the following three parts: a travel track, a robot body, and an end-effector. The manipulator can be smoothly and rapidly extended by adjusting the transmission ratio of the reducer to 1:2:1, using only one motor to drive two sections of the arm. This robot can transfer two pieces of glass substrate at one time, and improves the working efficiency. The kinematic and dynamic models of the robot are built based on the DH coordinate. Through the positioning accuracy experiment and vibration experiment of the end-effector, it is found that the robot has high precision during handling. The robots developed in this study can be used in large-scale glass substrate handling.


2020 ◽  
Vol 16 (3) ◽  
pp. 246-253
Author(s):  
Marcin Gackowski ◽  
Marcin Koba ◽  
Stefan Kruszewski

Background: Spectrophotometry and thin layer chromatography have been commonly applied in pharmaceutical analysis for many years due to low cost, simplicity and short time of execution. Moreover, the latest modifications including automation of those methods have made them very effective and easy to perform, therefore, the new UV- and derivative spectrophotometry as well as high performance thin layer chromatography UV-densitometric (HPTLC) methods for the routine estimation of amrinone and milrinone in pharmaceutical formulation have been developed and compared in this work since European Pharmacopoeia 9.0 has yet incorporated in an analytical monograph a method for quantification of those compounds. Methods: For the first method the best conditions for quantification were achieved by measuring the lengths between two extrema (peak-to-peak amplitudes) 252 and 277 nm in UV spectra of standard solutions of amrinone and a signal at 288 nm of the first derivative spectra of standard solutions of milrinone. The linearity between D252-277 signal and concentration of amironone and 1D288 signal of milrinone in the same range of 5.0-25.0 μg ml/ml in DMSO:methanol (1:3 v/v) solutions presents the square correlation coefficient (r2) of 0,9997 and 0.9991, respectively. The second method was founded on HPTLC on silica plates, 1,4-dioxane:hexane (100:1.5) as a mobile phase and densitometric scanning at 252 nm for amrinone and at 271 nm for milrinone. Results: The assays were linear over the concentration range of 0,25-5.0 μg per spot (r2=0,9959) and 0,25-10.0 μg per spot (r2=0,9970) for amrinone and milrinone, respectively. The mean recoveries percentage were 99.81 and 100,34 for amrinone as well as 99,58 and 99.46 for milrinone, obtained with spectrophotometry and HPTLC, respectively. Conclusion: The comparison between two elaborated methods leads to the conclusion that UV and derivative spectrophotometry is more precise and gives better recovery, and that is why it should be applied for routine estimation of amrinone and milrinone in bulk drug, pharmaceutical forms and for therapeutic monitoring of the drug.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Robert Christie

Abstract This paper presents an overview of the general chemical principles underlying the structures, synthesis and technical performance of azo pigments, the dominant chemical class of industrial organic pigments in the yellow, orange, and red shade areas, both numerically and in terms of tonnage manufactured. A description of the most significant historical features in this group of pigments is provided, starting from the discovery of the chemistry on which azo colorants are based by Griess in the mid-nineteenth century, through the commercial introduction of the most important classical azo pigments in the early twentieth century, including products known as the Hansa Yellows, β-naphthol reds, including metal salt pigments, and the diarylide yellows and oranges, to the development in the 1950s and 1960s of two classes of azo pigments that exhibit high performance, disazo condensation pigments and benzimidazolone-based azo pigments. A feature that complicates the description of the chemical structures of azo pigments is that they exist in the solid state as the ketohydrazone rather than the hydroxyazo form, in which they have been traditionally been illustrated. Numerous structural studies conducted over the years on an extensive range of azo pigments have demonstrated this feature. In this text, they are referred to throughout as azo (hydrazone) pigments. Since a common synthetic procedure is used in the manufacture of virtually all azo (hydrazone) pigments, this is discussed in some detail, including practical aspects. The procedure brings together two organic components as the fundamental starting materials, a diazo component and a coupling component. An important reason for the dominance of azo (hydrazone) pigments is that they are highly cost-effective. The syntheses generally involve low cost, commodity organic starting materials and are carried out in water as the reaction solvent, which offers obvious economic and environmental advantages. The versatility of the approach means that an immense number of products may be prepared, so that they have been adapted structurally to meet the requirements of many applications. On an industrial scale, the processes are straightforward, making use of simple, multi-purpose chemical plant. Azo pigments may be produced in virtually quantitative yields and the processes are carried out at or below ambient temperatures, thus presenting low energy requirements. Finally, provided that careful control of the reaction conditions is maintained, azo pigments may be prepared directly by an aqueous precipitation process that can optimise physical form, with control of particle size distribution, crystalline structure, and surface character. The applications of azo pigments are outlined, with more detail reserved for subsequent papers on individual products.


2021 ◽  
Author(s):  
Ning Liu ◽  
Qiaoqiao Zhang ◽  
Jingqi Guan

Seeking for low-cost and high-performance electrocatalysts for oxygen evolution reaction (OER) has drawn enormous research interest in the last few years. Reported herein is the topotactic construction of a binuclear...


Sign in / Sign up

Export Citation Format

Share Document