scholarly journals Side-Polished Fiber-Optic Line Sensor for High-Frequency Broadband Ultrasound Detection

Sensors ◽  
2019 ◽  
Vol 19 (2) ◽  
pp. 398
Author(s):  
Jeongmin Heo ◽  
Kyu-Tae Lee ◽  
Ryun Kim ◽  
Hyoung Baac

We demonstrate a side-polished fiber-optic ultrasound sensor (SPFS) with a broad frequency bandwidth (dc–46 MHz at 6-dB reduction) and a wide amplitude detection range from several kPa to 4.8 MPa. It also exhibits a high acoustic sensitivity of 426 mV/MPa with a signal-to-noise ratio of 35 dB and a noise-equivalent pressure of 6.6 kPa (over 1–50 MHz bandwidth) measured at 7-MHz frequency. The SPFS does not require multi-layer-coated structures that are used in other high-sensitivity optical detectors. Without any coating, this uses a microscale-roughened structure for evanescent-field interaction with an external medium acoustically modulated. Such unique structure allows significantly high sensitivity despite having a small detection area of only 0.016 mm2 as a narrow line sensor with a width of 8 μm. The SPFS performance is characterized in terms of acoustic frequency, amplitude responses, and sensitivities that are compared with those of a 1-mm diameter piezoelectric hydrophone used as a reference.

2004 ◽  
Vol 17 (1) ◽  
pp. 121-131
Author(s):  
Zbigniew Bielecki ◽  
Wladyslaw Kolosowski ◽  
Edward Sedek

The paper describes low noise preampliers designed for optical detectors Analysis of operating conditions affecting signal-to-noise ratio has been carried out. Each preamplier was carefully optimized to work with particular type of the detector.


Author(s):  
Xue-Peng Jin ◽  
Hong-Zhi Sun ◽  
Shuo-Wei Jin ◽  
Wan-Ming Zhao ◽  
Jing-Ren Tang ◽  
...  

Biosensors ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 208
Author(s):  
Hong Dinh Duong ◽  
Jong Il Rhee

In this study, ratiometric fluorescent glucose and lactate biosensors were developed using a ratiometric fluorescent oxygen-sensing membrane immobilized with glucose oxidase (GOD) or lactate oxidase (LOX). Herein, the ratiometric fluorescent oxygen-sensing membrane was fabricated with the ratio of two emission wavelengths of platinum meso-tetra (pentafluorophenyl) porphyrin (PtP) doped in polystyrene particles and coumarin 6 (C6) captured into silica particles. The operation mechanism of the sensing membranes was based on (i) the fluorescence quenching effect of the PtP dye by oxygen molecules, and (ii) the consumption of oxygen levels in the glucose or lactate oxidation reactions under the catalysis of GOD or LOX. The ratiometric fluorescent glucose-sensing membrane showed high sensitivity to glucose in the range of 0.1–2 mM, with a limit of detection (LOD) of 0.031 mM, whereas the ratiometric fluorescent lactate-sensing membrane showed the linear detection range of 0.1–0.8 mM, with an LOD of 0.06 mM. These sensing membranes also showed good selectivity, fast reversibility, and stability over long-term use. They were applied to detect glucose and lactate in artificial human serum, and they provided reliable measurement results.


Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 813
Author(s):  
Magdalena Świądro ◽  
Paweł Stelmaszczyk ◽  
Irena Lenart ◽  
Renata Wietecha-Posłuszny

The purpose of this study was to develop and validate a high-sensitivity methodology for identifying one of the most used drugs—ketamine. Ketamine is used medicinally to treat depression, alcoholism, and heroin addiction. Moreover, ketamine is the main ingredient used in so-called “date-rape” pills (DRP). This study presents a novel methodology for the simultaneous determination of ketamine based on the Dried Blood Spot (DBS) method, in combination with capillary electrophoresis coupled with a mass spectrometer (CE-TOF-MS). Then, 6-mm circles were punched out from DBS collected on Whatman DMPK-C paper and extracted using microwave-assisted extraction (MAE). The assay was linear in the range of 25–300 ng/mL. Values of limits of detection (LOD = 6.0 ng/mL) and quantification (LOQ = 19.8 ng/mL) were determined based on the signal to noise ratio. Intra-day precision at each determined concentration level was in the range of 6.1–11.1%, and inter-day between 7.9–13.1%. The obtained precision was under 15.0% (for medium and high concentrations) and lower than 20.0% (for low concentrations), which are in accordance with acceptance criteria. Therefore, the DBS/MAE/CE-TOF-MS method was successfully checked for analysis of ketamine in matrices other than blood, i.e., rose wine and orange juice. Moreover, it is possible to identify ketamine in the presence of flunitrazepam, which is the other most popular ingredient used in DRP. Based on this information, the selectivity of the proposed methodology for identifying ketamine in the presence of other components of rape pills was checked.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yazhou Wang ◽  
Yuyang Feng ◽  
Abubakar I. Adamu ◽  
Manoj K. Dasa ◽  
J. E. Antonio-Lopez ◽  
...  

AbstractDevelopment of novel mid-infrared (MIR) lasers could ultimately boost emerging detection technologies towards innovative spectroscopic and imaging solutions. Photoacoustic (PA) modality has been heralded for years as one of the most powerful detection tools enabling high signal-to-noise ratio analysis. Here, we demonstrate a novel, compact and sensitive MIR-PA system for carbon dioxide (CO2) monitoring at its strongest absorption band by combining a gas-filled fiber laser and PA technology. Specifically, the PA signals were excited by a custom-made hydrogen (H2) based MIR Raman fiber laser source with a pulse energy of ⁓ 18 μJ, quantum efficiency of ⁓ 80% and peak power of ⁓ 3.9 kW. A CO2 detection limit of 605 ppbv was attained from the Allan deviation. This work constitutes an alternative method for advanced high-sensitivity gas detection.


2019 ◽  
Vol 44 (3) ◽  
pp. 309-319 ◽  
Author(s):  
Joshua S. Jackman ◽  
Phillip G. Bell ◽  
Simone Gill ◽  
Ken van Someren ◽  
Gareth W. Davison ◽  
...  

A variety of strategies exist to modulate the acute physiological responses following resistance exercise aimed at enhancing recovery and/or adaptation processes. To assess the true impact of these strategies, it is important to know the ability of different measures to detect meaningful change. We investigated the sensitivity of measures used to quantify acute physiological responses to resistance exercise and constructed a physiological profile to characterise the magnitude of change and the time course of these responses. Eight males accustomed to regular resistance exercise performed experimental sessions during a “control week”, void of an exercise stimulus. The following week, termed the “exercise week”, participants repeated this sequence of experimental sessions, and they also performed a bout of lower-limb resistance exercise following the baseline assessments. Assessments were conducted at baseline and at 2, 6, 24, 48, 72, and 96 h after the intervention. On the basis of the signal-to-noise ratio, the most sensitive measures were maximal voluntary isometric contraction, 20-m sprint, countermovement jump peak force, rate of force development (100–200 ms), muscle soreness, Daily Analysis Of Life Demands For Athletes part B, limb girth, matrix metalloproteinase-9, interleukin-6, creatine kinase, and high-sensitivity C-reactive protein with ratios >1.5. Clear changes in these measures following resistance exercise were determined via magnitude-based inferences. These findings highlight measures that can detect real changes in acute physiological responses following resistance exercise in trained individuals. Researchers investigating strategies to manipulate acute physiological responses for recovery and/or adaptation can use these measures, as well as the recommended sampling points, to be confident that their interventions are making a worthwhile impact.


2021 ◽  
Vol 368 (6) ◽  
Author(s):  
Liwen Zhang ◽  
Qingyu Lv ◽  
Yuling Zheng ◽  
Xuan Chen ◽  
Decong Kong ◽  
...  

ABSTRACT T-2 is a common mycotoxin contaminating cereal crops. Chronic consumption of food contaminated with T-2 toxin can lead to death, so simple and accurate detection methods in food and feed are necessary. In this paper, we establish a highly sensitive and accurate method for detecting T-2 toxin using AlphaLISA. The system consists of acceptor beads labeled with T-2-bovine serum albumin (BSA), streptavidin-labeled donor beads and biotinylated T-2 antibodies. T-2 in the sample matrix competes with T-2-BSA for antibodies. Adding biotinylated antibodies to the test well followed by T-2 and T-2-BSA acceptor beads yielded a detection range of 0.03–500 ng/mL. The half-maximal inhibitory concentration was 2.28 ng/mL and the coefficient of variation was <10%. In addition, this method had no cross-reaction with other related mycotoxins. This optimized method for extracting T-2 from food and feed samples achieved a recovery rate of approximately 90% in T-2 concentrations as low as 1 ng/mL, better than the performance of a commercial ELISA kit. This competitive AlphaLISA method offers high sensitivity, good specificity, good repeatability and simple operation for detecting T-2 toxin in food and feed.


Sign in / Sign up

Export Citation Format

Share Document