exercise stimulus
Recently Published Documents


TOTAL DOCUMENTS

35
(FIVE YEARS 9)

H-INDEX

13
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Agata A Mossakowski ◽  
Henning T Langer ◽  
Alec Bizieff ◽  
Alec M Avey ◽  
Hermann Zbinden-Foncea ◽  
...  

Desminopathy the most common intermediate filament disease in humans. Desmin is an essential part of the filamentous network that aligns myofibrils, anchors nuclei and mitochondria, and connects the z-discs and the sarcolemma. We created a rat model with a mutation in R349P DES, analog to the most frequent R350P DES missense mutation in humans. To examine the effects of a chronic, physiological exercise stimulus on desminopathic muscle, we subjected R349P DES rats and their wildtype (WT) and heterozygous littermates to a treadmill running regime. We saw significantly lower running capacity in DES rats that worsened over the course of the study. We found indicators of increased autophagic and proteasome activity with running in DES compared to WT. Stable isotope labeling and LC-MS analysis displayed distinct adaptations of the proteomes of WT and DES animals at baseline as well as with exercise: While key proteins of glycolysis, mitochondria and thick filaments increased their synthetic activity with running in WT, these proteins were higher at baseline in DES and did not change with running. The results suggest an impairment in adaption to chronic exercise in DES muscle and a subsequent exacerbation in the functional and histopathological phenotype.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yvoni Kyriakidou ◽  
Isabella Cooper ◽  
Igor Kraev ◽  
Sigrun Lange ◽  
Bradley T. Elliott

Background: Exercise-induced muscle damage (EIMD) results in transient muscle inflammation, strength loss, and muscle soreness and may cause subsequent exercise avoidance. Research has recently proven that skeletal muscle can also release extracellular vesicles (EVs) into the circulation following a bout of exercise. However, EV’s potential role, including as a biomarker, in the response to eccentric resistance exercise stimulus remains unclear.Methods: Twelve (younger, n=7, 27.0±1.5years and older, n=5, 63.0±1.0years) healthy, physically active males, undertaking moderate, regular physical activity (3–5 times per week) performed a unilateral high intensity eccentric exercise protocol. Venous plasma was collected for assessment of EVs and creatine kinase (CK) prior to EIMD, immediately after EIMD, and 1–72h post-EIMD, and maximal voluntary isometric contraction (MVIC) and delayed onset muscle soreness (DOMS) were assessed at all time points, except 1 and 2h post-EIMD.Results: A significant effect of both time (p=0.005) and group (p<0.001) was noted for MVIC, with younger participants’ MVIC being higher throughout. Whilst a significant increase was observed in DOMS in the younger group (p=0.014) and in the older group (p=0.034) following EIMD, no significant differences were observed between groups. CK was not different between age groups but was altered following the EIMD (main effect of time p=0.026), with increased CK seen immediately post-, at 1 and 2h post-EIMD. EV count tended to be lower in older participants at rest, relative to younger participants (p=0.056), whilst EV modal size did not differ between younger and older participants pre-EIMD. EIMD did not substantially alter EV modal size or EV count in younger or older participants; however, the alteration in EV concentration (ΔCount) and EV modal size (ΔMode) between post-EIMD and pre-EIMD negatively associated with CK activity. No significant associations were noted between MVIC or DOMS and either ΔCount or ΔMode of EVs at any time point.Conclusion: These findings suggest that profile of EV release, immediately following exercise, may predict later CK release and play a role in the EIMD response. Exercise-induced EV release profiles may therefore serve as an indicator for subsequent muscle damage.


2021 ◽  
pp. 690-698
Author(s):  
Brent Feland ◽  
Andy C. Hopkins ◽  
David G. Behm

Although stretching is recommended for fitness and health, there is little research on the effects of different stretching routines on hemodynamic responses of senior adults. It is not clear whether stretching can be considered an aerobic exercise stimulus or may be contraindicated for the elderly. The purpose of this study was to compare the effect of three stretching techniques; contract/relax proprioceptive neuromuscular facilitation (PNF), passive straight-leg raise (SLR), and static sit-and-reach (SR) on heart rate (HR) and blood pressure (BP) in senior athletes (119 participants: 65.6 ± 7.6 yrs.). Systolic blood pressure (SBP), diastolic blood pressure (DBP), mean arterial pressure (MAP) and HR measurements were taken at baseline (after 5-minutes in a supine position), 45 and 90-seconds, during the stretch, and 2-minutes after stretching. Within each stretching group, (SLR, PNF, and SR) DBP, MAP and HR at pre-test and 2-min post-stretch were lower than at 45-s and 90-s during the stretch. SLR induced smaller increases in DBP and MAP than PNF and SR, whereas PNF elicited lower HR responses than SR. In conclusion, trained senior adult athletes experienced small to moderate magnitude increases of hemodynamic responses with SLR, SR and PNF stretching, which recovered to baseline values within 2-min after stretching. Furthermore, the passive SLR induced smaller increases in BP than PNF and SR, while PNF elicited lower HR responses than SR. These increases in hemodynamic responses (HR and BP) were not of a magnitude to be clinically significant, provide an aerobic exercise stimulus or warrant concerns for most senior athletes.


2020 ◽  
Vol 19 (5) ◽  
pp. 421
Author(s):  
Leandro Paim da Cruz Carvalho ◽  
Matheus Borges da Cruz Gomes ◽  
Ícaro Cerqueira da Silva Oliveira ◽  
Pedro Henrique Silva Santos ◽  
Ariel Custódio De Oliveira II ◽  
...  

The skeletal muscle is the largest endocrine organ of human body and have this role through peptides and proteins known as myokines. The myokines are cytokines that are produced and secreted by the skeletal muscle in response to the stimulus of contraction, acting locally and/or be released in the circulation and influence other distant tissues. Physical exercise is a potent stimulus for molecular adaptations in the organism, and when practiced with regularity, promotes structural and functional adaptations in skeletal muscle. Therefore, physical exercise has a direct action on the concentrations of myokines. Based on this, this research investigated, through a systematic literature review, the responses of myokines concentrations from the stimulus of physical exercise. Searches were carried out by two researchers independently, in the Scielo, Pubmed and Virtual Healthy Library databases, analyzing articles published between 2009 and 2020, after a careful selection process in four stages, the works that reached the third stage were read in full and submitted to quality analysis using a critical review form. At the end of the process, 12 articles were selected to compose the discussion. The analyzed articles show that physical performance, both acute and chronic, is capable of significantly modulating the concentration of several myokines, promoting an increase in many such as IL-6, IL-15, BDNF and apelin, in addition to a significant decrease in muscle myostatin.Keywords: exercise, skeletal muscle fibers, cytokines.


Nutrients ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 641 ◽  
Author(s):  
Ana P. Pinto ◽  
Tales S. Vieira ◽  
Bruno B. Marafon ◽  
Gabriela Batitucci ◽  
Elisa M. B. Cabrera ◽  
...  

The present study verified the responses of proteins related to the autophagy pathway after 10 h of fast with resistance exercise and protein ingestion in skeletal muscle and liver samples. The rats were distributed into five experimental groups: control (CT; sedentary and without gavage after fast), exercise immediately (EXE-imm; after fast, rats were submitted to the resistance protocol and received water by gavage immediately after exercise), exercise after 1 h (EXE-1h; after fast, rats were submitted to the resistance protocol and received water by gavage 1 h after exercise), exercise and supplementation immediately after exercise (EXE/Suppl-imm; after fast, rats were submitted to the resistance protocol and received a mix of casein: whey protein 1:1 (w/w) by gavage immediately after exercise), exercise and supplementation 1 h after exercise (EXE/Suppl-1h; after fast, rats were submitted to the resistance protocol and received a mix of casein: whey protein 1:1 (w/w) by gavage 1 h after exercise). In summary, the current findings show that the combination of fasting, acute resistance exercise, and protein blend ingestion (immediately or 1 h after the exercise stimulus) increased the serum levels of leucine, insulin, and glucose, as well as the autophagy protein contents in skeletal muscle, but decreased other proteins related to the autophagic pathway in the liver. These results deserve further mechanistic investigations since athletes are combining fasting with physical exercise to enhance health and performance outcomes.


Metabolites ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 10
Author(s):  
Shoko Sawano ◽  
Keishi Oza ◽  
Tetsuya Murakami ◽  
Mako Nakamura ◽  
Ryuichi Tatsumi ◽  
...  

To clarify the relationship between the fiber type composition and meat quality, we performed metabolomic analysis using porcine longissimus dorsi (LD) muscles. In the LD of pigs raised outdoors, the expression of myosin heavy chain (MyHC)1 (slow-twitch fiber marker protein) was significantly increased compared with that of MyHC1 in pigs raised in an indoor pen, suggesting that rearing outdoors could be considered as an exercise treatment. These LD samples were subjected to metabolomic analysis for examining the profile of most primary and secondary metabolites. We found that the sex of the animal and exercise stimulation had a strong influence on the metabolomic profile in the porcine skeletal muscles, and this difference in the metabolomic profile is likely in part due to the changes in the muscle fiber type. We also examined the effects of cooking (70 °C for 1 h). The effect of exercise on the metabolomic profile was also maintained in the cooked muscle tissues. Cooking treatment resulted in an increase in some of the metabolite levels while decreasing in some other metabolite levels. Thus, our study could indicate the effect of the sex of the animal, exercise stimulus, and cooking on the metabolomic profile of pork meat.


2019 ◽  
Vol 5 (1) ◽  
pp. 2-8 ◽  
Author(s):  
Maureen A.J.M. van Eijnatten ◽  
Michael J. van Rijssel ◽  
Rob J.A. Peters ◽  
Rudolf M. Verdaasdonk ◽  
Jan H. Meijer

Abstract The non-invasively measured initial systolic time interval (ISTI) reflects a time difference between the electrical and pumping activity of the heart and depends on cardiac preload, afterload, autonomic nervous control and training level. However, the duration of the ISTI has not yet been compared to other time markers of the heart cycle. The present study gauges the duration of the ISTI by comparing the end point of this interval, the C-point, with heart cycle markers obtained by echocardiography. The heart rate of 16 healthy subjects was varied by means of an exercise stimulus. It was found that the C-point, and therefore the end point of ISTI, occurred around the moment of the maximum diameter of the aortic arch in all subjects and at all heart rates. However, while the time difference between the opening of the aortic valves and the maximum diameter of the aortic arch decreased significantly with decreasing RR-interval, the time difference with respect to the moment of the C-point remained constant within the subjects. This means that the shortening of the ISTI with increasing heart rate in response to an exercise stimulus was caused by a shortening of the pre-ejection period (PEP). It is concluded that the ISTI can be used as a non-invasive parameter indicating the time difference between the electrical and mechanical pumping activity of the heart, both inside and outside the clinic.


Nutrients ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1586 ◽  
Author(s):  
Hills ◽  
Mitchell ◽  
Wells ◽  
Russell

Honey is a natural substance formed primarily of carbohydrates (~80%) which also contains a number of other compounds purported to confer health benefits when consumed. Due to its carbohydrate composition (low glycaemic index, mostly fructose and glucose), honey may theoretically exert positive effects when consumed before, during or after exercise. This review therefore appraised research examining the effects of honey consumption in combination with exercise in humans. Online database (PubMed, MEDLINE, SPORTDiscus) searches were performed, yielding 273 results. Following duplicate removal and application of exclusion criteria, nine articles were reviewed. Large methodological differences existed in terms of exercise stimulus, population, and the nutritional interventions examined. All nine studies reported biochemical variables, with four examining the effects of honey on exercise performance, whilst five described perceptual responses. Acute supplementation around a single exercise session appeared to elicit similar performance, perceptual, and immunological responses compared with other carbohydrate sources, although some performance benefit has been observed relative to carbohydrate-free comparators. When consumed over a number of weeks, honey may dampen immunological perturbations arising from exercise and possibly improve markers of bone formation. More well-controlled research is required to better understand the role for honey in a food-first approach to exercise nutrition.


2019 ◽  
Vol 44 (3) ◽  
pp. 309-319 ◽  
Author(s):  
Joshua S. Jackman ◽  
Phillip G. Bell ◽  
Simone Gill ◽  
Ken van Someren ◽  
Gareth W. Davison ◽  
...  

A variety of strategies exist to modulate the acute physiological responses following resistance exercise aimed at enhancing recovery and/or adaptation processes. To assess the true impact of these strategies, it is important to know the ability of different measures to detect meaningful change. We investigated the sensitivity of measures used to quantify acute physiological responses to resistance exercise and constructed a physiological profile to characterise the magnitude of change and the time course of these responses. Eight males accustomed to regular resistance exercise performed experimental sessions during a “control week”, void of an exercise stimulus. The following week, termed the “exercise week”, participants repeated this sequence of experimental sessions, and they also performed a bout of lower-limb resistance exercise following the baseline assessments. Assessments were conducted at baseline and at 2, 6, 24, 48, 72, and 96 h after the intervention. On the basis of the signal-to-noise ratio, the most sensitive measures were maximal voluntary isometric contraction, 20-m sprint, countermovement jump peak force, rate of force development (100–200 ms), muscle soreness, Daily Analysis Of Life Demands For Athletes part B, limb girth, matrix metalloproteinase-9, interleukin-6, creatine kinase, and high-sensitivity C-reactive protein with ratios >1.5. Clear changes in these measures following resistance exercise were determined via magnitude-based inferences. These findings highlight measures that can detect real changes in acute physiological responses following resistance exercise in trained individuals. Researchers investigating strategies to manipulate acute physiological responses for recovery and/or adaptation can use these measures, as well as the recommended sampling points, to be confident that their interventions are making a worthwhile impact.


Author(s):  
T. Abe ◽  
S.J. Dankel ◽  
S.L. Buckner ◽  
M.B. Jessee ◽  
K.T. Mattocks ◽  
...  

There may be some individuals who do not adapt favorably to an exercise stimulus. This is most commonly determined by assessing the error of the measurement across two separate testing sessions separated by a short period of time. It has been recommended that this error be assessed over the same time frame as the intervention. We examined the 24-h test-retest reliability (n=18, aged 42 to 64 years) of forearm muscle thickness, handgrip strength, and “muscle quality” and compared that to the reliability observed when visits are separated by 1-year (n=80, aged 60 to 79 years). The measurement errors were greater in all measured variables following test-retest separated by 1-year than the test-retest separated by 24-hours. Our findings suggest that a time-matched control group is likely important to fully capture the error of the tester as well as the error associated with random biological variability within a timed intervention.


Sign in / Sign up

Export Citation Format

Share Document