scholarly journals Enthalpy-Sensing Microsystem Effective in Continuous Flow

Sensors ◽  
2019 ◽  
Vol 19 (3) ◽  
pp. 566
Author(s):  
Taoufik Mhammedi ◽  
Lionel Camberlein ◽  
Frédéric Polet ◽  
Bruno Bêche ◽  
Etienne Gaviot

A new microsystem designed to detect and measure in real time the enthalpy of mixing of two fluid constituents is presented. A preliminary approach to quantify the enthalpy of dilution values or mixing is first discussed. Then, a coherent rationale leading to structure devices operating in real time is formulated, considering the straightforward assessment of heat-flux transducers (HFTs) capability. Basic thermodynamic observations regarding the analogy between thermal and electrical systems are highlighted prior consideration of practical examples involving mixing water and alcohols. Fundamentals about HFT design are highlighted before presenting an adequate way to integrate both functions of mixing and measuring the entailed heat exchange as two continuously flowing fluids interact with one another. Thereby, the development of a relevant prototype of such a dedicated microsystem is discussed. Its design, fabrication and implementation under real operating conditions are presented together with its assessed performance and limits so as to highlight the advantages and shortcomings of the concept.

Proceedings ◽  
2018 ◽  
Vol 2 (13) ◽  
pp. 771
Author(s):  
Taoufik Mhammedi ◽  
Lionel Camberlein ◽  
Frédéric Polet ◽  
Bruno Bêche ◽  
Etienne Gaviot

A new microsystem, designed to detect and measure in real time the enthalpy of mixing of two fluid-constituents is presented. A preliminary approach to arrange miniaturized batch-cells allowing detecting enthalpy of dilution or mixing is first discussed. Then, a coherent rationale leading to structure devices operating in real time is formulated, considering the straightforward assessment of heat flux transducers (HFTs) capability. Basic thermodynamic observations regarding analogy between thermal and electrical systems are highlighted prior consideration of practical examples involving mixing of water and alcohols. Fundamentals about HFTs design are highlighted before presenting an adequate way to integrate both functions of mixing and measuring the entailed heat exchange as two continuously flowing fluids interact with each other. Then, a prototype of such a dedicated device is discussed with its relevant expected performance.


2013 ◽  
Vol 12 (3) ◽  
pp. 035-038
Author(s):  
Wacław Bieda ◽  
Jan Radoń ◽  
Grzegorz Nawalany

The paper presents the results of two-year studies conducted in real operating conditions of a non-insulated and unheated barn for 120 cows. As a result, it was possible to determine temperature fields in the ground beneath the floor and around the building, as well as to define heat flux directions. It was concluded that there is no analogy between temperature fields and heat flux directions with the heated buildings. In colder periods of the year, the heat accumulated in the ground is emitted to the inside of the building; in the summer, the ground absorbs the excess of heat from the building. The final conclusion was that the foundations should be insulated vertically.


2020 ◽  
Vol 117 (6) ◽  
pp. 602
Author(s):  
Heping Liu ◽  
Jianjun Zhang ◽  
Hongbiao Tao ◽  
Hui Zhang

In this article, based on the actual monitored temperature data from mold copper plate with a dense thermocouple layout and the measured magnetic flux density values in a CSP thin-slab mold, the local heat flux and thin-slab solidification features in the funnel-type mold with electromagnetic braking are analyzed. The differences of local heat flux, fluid flow and solidified shell growth features between two steel grades of Q235B with carbon content of 0.19%C and DC01 of 0.03%C under varying operation conditions are discussed. The results show the maximum transverse local heat flux is near the meniscus region of over 0.3 m away from the center of the wide face, which corresponds to the upper flow circulation and the large turbulent kinetic energy in a CSP funnel-type mold. The increased slab width and low casting speed can reduce the fluctuation of the transverse local heat flux near the meniscus. There is a decreased transverse local heat flux in the center of the wide face after the solidified shell is pulled through the transition zone from the funnel-curve to the parallel-cure zone. In order to achieve similar metallurgical effects, the braking strength should increase with the increase of casting speed and slab width. Using the strong EMBr field in a lower casting speed might reverse the desired effects. There exist some differences of solidified shell thinning features for different steel grades in the range of the funnel opening region under the measured operating conditions, which may affect the optimization of the casting process in a CSP caster.


2020 ◽  
Vol 13 (2) ◽  
pp. 126-140
Author(s):  
Jing Gan ◽  
Xiaobin Fan ◽  
Zeng Song ◽  
Mingyue Zhang ◽  
Bin Zhao

Background: The power performance of an electric vehicle is the basic parameter. Traditional test equipment, such as the expensive chassis dynamometer, not only increases the cost of testing but also makes it impossible to measure all the performance parameters of an electric vehicle. Objective: A set of convenient, efficient and sensitive power measurement system for electric vehicles is developed to obtain the real-time power changes of hub-motor vehicles under various operating conditions, and the dynamic performance parameters of hub-motor vehicles are obtained through the system. Methods: Firstly, a set of on-board power test system is developed by using virtual instrument (Lab- VIEW). This test system can obtain the power changes of hub-motor vehicles under various operating conditions in real-time and save data in real-time. Then, the driving resistance of hub-motor vehicles is analyzed, and the power performance of hub-motor vehicles is studied in depth. The power testing system is proposed to test the input power of both ends of the driving motor, and the chassis dynamometer is combined to test so that the output efficiency of the driving motor can be easily obtained without disassembly. Finally, this method is used to carry out the road test and obtain the vehicle dynamic performance parameters. Results: The real-time current, voltage and power, maximum power, acceleration time and maximum speed of the vehicle can be obtained accurately by using the power test system in the real road experiment. Conclusion: The maximum power required by the two motors reaches about 9KW, and it takes about 20 seconds to reach the maximum speed. The total power required to maintain the maximum speed is about 7.8kw, and the maximum speed is 62km/h. In this article, various patents have been discussed.


Author(s):  
Peter Sagmeister ◽  
René Lebl ◽  
Ismael Castillo ◽  
Jakob Rehrl ◽  
Julia Kruisz ◽  
...  

2021 ◽  
Author(s):  
Peter Sagmeister ◽  
René Lebl ◽  
Ismael Castillo ◽  
Jakob Rehrl ◽  
Julia Kruisz ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
pp. 377
Author(s):  
Michele Scarpiniti ◽  
Enzo Baccarelli ◽  
Alireza Momenzadeh ◽  
Sima Sarv Ahrabi

The recent introduction of the so-called Conditional Neural Networks (CDNNs) with multiple early exits, executed atop virtualized multi-tier Fog platforms, makes feasible the real-time and energy-efficient execution of analytics required by future Internet applications. However, until now, toolkits for the evaluation of energy-vs.-delay performance of the inference phase of CDNNs executed on such platforms, have not been available. Motivated by these considerations, in this contribution, we present DeepFogSim. It is a MATLAB-supported software toolbox aiming at testing the performance of virtualized technological platforms for the real-time distributed execution of the inference phase of CDNNs with early exits under IoT realms. The main peculiar features of the proposed DeepFogSim toolbox are that: (i) it allows the joint dynamic energy-aware optimization of the Fog-hosted computing-networking resources under hard constraints on the tolerated inference delays; (ii) it allows the repeatable and customizable simulation of the resulting energy-delay performance of the overall Fog execution platform; (iii) it allows the dynamic tracking of the performed resource allocation under time-varying operating conditions and/or failure events; and (iv) it is equipped with a user-friendly Graphic User Interface (GUI) that supports a number of graphic formats for data rendering. Some numerical results give evidence for about the actual capabilities of the proposed DeepFogSim toolbox.


Author(s):  
Xabier Lopez de Pariza ◽  
Tim Erdmann ◽  
Pedro L. Arrechea ◽  
Leron Perez ◽  
Charles Dausse ◽  
...  

2021 ◽  
Author(s):  
Roberto Mosca ◽  
Shyang Maw Lim ◽  
Mihai Mihaescu

Abstract Under on-engine operating conditions, a turbocharger turbine is subject to a pulsating flow and, consequently, experiences deviations from the performance measured under continuous flow. Furthermore, due to the high exhaust gas temperatures, heat transfer further deteriorates the turbine performance. The complex interaction of the aerothermodynamic mechanisms occurring inside the hot-side, and consequently the turbine behavior, is largely affected by the shape of the pulse, which can be parameterized through three parameters: pulse amplitude, frequency, and temporal gradient. This paper investigates the hot-side system response to the pulse amplitude via a Detached Eddy Simulation (DES) approach of a radial turbocharger turbine system including exhaust manifold. Firstly, the computational model is validated against experimental data obtained under gas stand continuous flow conditions. Then, two different mass flow pulses, characterized by a pulse amplitude difference of ≈ 5%, are compared. An exergy-based post-processing approach shows the beneficial effects of increasing pulse amplitude. An improvement of the turbine power by 1.3%, despite the increment of the heat transfer and total internal irreversibilities by 5.8% and 3.4%, respectively, is reported. As a result of the higher maximum speed, internal losses by viscous friction are responsible for the growth of the total internal irreversibilities as pulse amplitude increases.


Author(s):  
Tânia S. Cação Ferreira ◽  
Tony Arts

An investigation of thermal effects on bypass transition was conducted on the highly-loaded turbine guide vane LS89 in the short-duration isentropic Compression Tube (CT-2) facility at the von Karman Institute for Fluid Dynamics (VKI). Measurements from high response surface-mounted thin films coupled with analog circuits provided the time-resolved wall heat flux history whereas pneumatic probes, differential pressure transducers and thermocouples allowed the accurate definition of the inlet and outlet flow conditions. The gas-to-wall temperature ratio, ranging from 1.11 to 1.55, was varied by changing the inlet total temperature. The isentropic exit Mach number ranged from 0.90 to 1.00 and the global freestream turbulence intensity value was set at 0.8, 3.9 and 5.3%. The isentropic exit Reynolds number was kept at 106. The onset of transition was tracked through the wall heat flux signal fluctuations. Within the present operating conditions, no significant effect of the gas/wall temperature ratio was put in evidence. At the present (design) transonic exit conditions, the local free-stream pressure gradient appears to remain the main driver of the onset of transition. A wider range of operating conditions must be considered to draw final conclusions.


Sign in / Sign up

Export Citation Format

Share Document