scholarly journals A Precise Diagnosis Method of Structural Faults of Rotating Machinery based on Combination of Empirical Mode Decomposition, Sample Entropy, and Deep Belief Network

Sensors ◽  
2019 ◽  
Vol 19 (3) ◽  
pp. 591 ◽  
Author(s):  
Zhaoyi Guan ◽  
Zhiqiang Liao ◽  
Ke Li ◽  
Peng Chen

To precisely diagnose the rotating machinery structural faults, especially structural faults under low rotating speeds, a novel scheme based on combination of empirical mode decomposition (EMD), sample entropy, and deep belief network (DBN) is proposed in this paper. EMD can decompose a signal into several intrinsic mode functions (IMFs) with different signal-to-noise ratios (SNRs) and sample entropy is performed to extract the signals that carry fault information with high SNR. The extracted fault signal is reconstructed into a new vibration signal that will carry abundant fault information. DBN has strong feature extraction and classification performance. It is suitably performed to build the diagnosis model based on the reconstructed signal. The effectiveness of the proposed method is validated by structural faults signal and the comparative experiments (BPNN, CNN, time-domain signal only, frequency-domain signal only). The results show that the diagnosis accuracy of the proposed method is between 99% and 100%, the BPNN is less than 25%, and the CNN is between 70% and 95%, which means the verified, proposed method has a superior performance to diagnose the structural fault.

2017 ◽  
Vol 14 (4) ◽  
pp. 888-898 ◽  
Author(s):  
Wei Liu ◽  
Siyuan Cao ◽  
Zhiming Wang

Abstract We have proposed a new denoising method for the simultaneous noise reduction and preservation of seismic signals based on variational mode decomposition (VMD). VMD is a recently developed adaptive signal decomposition method and an advance in non-stationary signal analysis. It solves the mode-mixing and non-optimal reconstruction performance problems of empirical mode decomposition that have existed for a long time. By using VMD, a multi-component signal can be non-recursively decomposed into a series of quasi-orthogonal intrinsic mode functions (IMFs), each of which has a relatively local frequency range. Meanwhile, the signal will focus on a smaller number of obtained IMFs after decomposition, and thus the denoised result is able to be obtained by reconstructing these signal-dominant IMFs. Synthetic examples are given to demonstrate the effectiveness of the proposed approach and comparison is made with the complete ensemble empirical mode decomposition, which demonstrates that the VMD algorithm has lower computational cost and better random noise elimination performance. The application of on field seismic data further illustrates the superior performance of our method in both random noise attenuation and the recovery of seismic events.


2013 ◽  
Vol 281 ◽  
pp. 10-13 ◽  
Author(s):  
Xian You Zhong ◽  
Liang Cai Zeng ◽  
Chun Hua Zhao ◽  
Xian Ming Liu ◽  
Shi Jun Chen

Wind turbine gearbox is subjected to different sorts of failures, which lead to the increasement of the cost. A approach to fault diagnosis of wind turbine gearbox based on empirical mode decomposition (EMD) and teager kaiser energy operator (TKEO) is presented. Firstly, the original vibration signal is decomposed into a number of intrinsic mode functions (IMFs) using EMD. Then the IMF containing fault information is analyzed with TKEO, The experimental results show that EMD and TKEO can be used to effectively diagnose faults of wind turbine gearbox.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Yuan Xie ◽  
Tao Zhang

The analysis of vibration signals has been a very important technique for fault diagnosis and health management of rotating machinery. Classic fault diagnosis methods are mainly based on traditional signal features such as mean value, standard derivation, and kurtosis. Signals still contain abundant information which we did not fully take advantage of. In this paper, a new approach is proposed for rotating machinery fault diagnosis with feature extraction algorithm based on empirical mode decomposition (EMD) and convolutional neural network (CNN) techniques. The fundamental purpose of our newly proposed approach is to extract distinguishing features. Frequency spectrum of the signal obtained through fast Fourier transform process is trained in a designed CNN structure to extract compressed features with spatial information. To solve the nonstationary characteristic, we also apply EMD technique to the original vibration signals. EMD energy entropy is calculated using the first few intrinsic mode functions (IMFs) which contain more energy. With features extracted from both methods combined, classification models are trained for diagnosis. We carried out experiments with vibration data of 52 different categories under different machine conditions to test the validity of the approach, and the results indicate it is more accurate and reliable than previous approaches.


2013 ◽  
Vol 791-793 ◽  
pp. 1006-1009
Author(s):  
Jia Xing Zhu ◽  
Wen Bin Zhang ◽  
Ya Song Pu ◽  
Yan Jie Zhou

Aiming at the purification of axis trace, a novel method was proposed by using ensemble empirical mode decomposition (EEMD). Ensemble empirical mode decomposition decomposed a complicated signal into a collection of intrinsic mode functions (IMFs). Then according to prior knowledge of rotating machinery, chose intrinsic mode function components and reconstructed the signal. Finally the purification of axis trace was obtained. Simulation and practical results show the advantage of ensemble empirical mode decomposition. This method also has simple algorithm and high calculating speed; it provides a new method for purification of axis trace.


2010 ◽  
Vol 40-41 ◽  
pp. 140-145
Author(s):  
Ren Di Yang ◽  
Yan Li Zhang

To remove the noises in ECG and to overcome the disadvantage of the denoising method only based on empirical mode decomposition (EMD), a combination of EMD and adaptive noise cancellation is introduced in this paper. The noisy ECG signals are firstly decomposed into intrinsic mode functions (IMFs) by EMD. Then the IMFs corresponding to noises are used to reconstruct signal. The reconstructed signal as the reference input of adaptive noise cancellation and the noisy ECG as the basic input, the de-noised ECG signal is obtained after adaptive filtering. The de-noised ECG has high signal-to-noise ratio, preferable correlation coefficient and lower mean square error. Through analyzing these performance parameters and testing the denoising method using MIT-BIH Database, the conclusion can be drawn that the combination of EMD and adaptive noise cancellation has considered the frequency distribution of ECG and noises, eliminate the noises effectively and need not to select a proper threshold.


Author(s):  
Yaguo Lei ◽  
Ming J. Zuo ◽  
Mohammad Hoseini

Ensemble empirical mode decomposition (EEMD) was developed to alleviate the mode-mixing problem in empirical mode decomposition (EMD). With EEMD, the components with physical meaning can be extracted from the signal. The bispectrum, a third-order statistic, helps identify phase-coupling effects, which are useful for detecting faults in rotating machinery. Combining the advantages of EEMD and bispectrum, this paper proposes a new method for detecting such faults. First, the original vibration signals collected from rotating machinery are decomposed by EEMD and a set of intrinsic mode functions (IMFs) is produced. Then, the IMFs are reconstructed into new signals using the weighted reconstruction algorithm developed in this paper. Finally, the reconstructed signals are analyzed via the bispectrum to detect faults. Both simulation examples and gearbox experiments demonstrate that the proposed method can detect gear faults more clearly than can directly performing bispectrum analysis on the original vibration signals.


2014 ◽  
Vol 986-987 ◽  
pp. 801-804
Author(s):  
Wen Bin Zhang ◽  
Jia Xing Zhu ◽  
Ya Song Pu ◽  
Yan Ping Su

. Aiming at the purification of rotor center’s orbit, a new approach was presented by using ensemble empirical mode decomposition (EEMD). Ensemble empirical mode decomposition decomposed a complicated signal into a series of intrinsic mode functions (IMFs). Then according to prior knowledge of rotating machinery, chose some interested IMFs and reconstructed the needed signal. By doing this the noises would be eliminated successfully. At last the purification of rotor center’s orbit was obtained by extracting the useful signal component. Simulation and practical results show the advantage of EEMD in noise de-noising and purification of rotor center’s orbit. This method also has simple algorithm and high calculating speed; it provides a new way for purification of rotor center’s orbit of rotating machinery.


2017 ◽  
Vol 17 (3) ◽  
pp. 494-513 ◽  
Author(s):  
Jong-Sik Kim ◽  
Sang-Kwon Lee

In the previous work, the cyclostationarity process, which is one of signal processing methods, has been used in health monitoring of the rotating machinery because of the superior detecting property of hidden periodicity. However, it is often difficult to acquire the information about the hidden periodicity due to the fault of the rotating machinery when the impact signal is low. Therefore, a certain preprocessing tool to extract the information about the impact signal due to the fault is required. This article presents the new detection process of tooth faults in a gearbox system based on the empirical mode decomposition algorithm which adaptively decomposes the signal into a set of intrinsic mode functions and the cyclostationarity process which identifies the hidden periodicity clearly in bi-frequency domain. The proposed method was demonstrated with a simulated signal and was applied to the detection of four types of conditions of tooth fault successfully.


Sign in / Sign up

Export Citation Format

Share Document