scholarly journals A Low-Cost Smart Sensor Network for Catchment Monitoring

Sensors ◽  
2019 ◽  
Vol 19 (10) ◽  
pp. 2278 ◽  
Author(s):  
Dian Zhang ◽  
Brendan Heery ◽  
Maria O’Neil ◽  
Suzanne Little ◽  
Noel E. O’Connor ◽  
...  

Understanding hydrological processes in large, open areas, such as catchments, and further modelling these processes are still open research questions. The system proposed in this work provides an automatic end-to-end pipeline from data collection to information extraction that can potentially assist hydrologists to better understand the hydrological processes using a data-driven approach. In this work, the performance of a low-cost off-the-shelf self contained sensor unit, which was originally designed and used to monitor liquid levels, such as AdBlue, fuel, lubricants etc., in a sealed tank environment, is first examined. This process validates that the sensor does provide accurate water level information for open water level monitoring tasks. Utilising the dataset collected from eight sensor units, an end-to-end pipeline of automating the data collection, data processing and information extraction processes is proposed. Within the pipeline, a data-driven anomaly detection method that automatically extracts rapid changes in measurement trends at a catchment scale. The lag-time of the test site (Dodder catchment Dublin, Ireland) is also analyzed. Subsequently, the water level response in the catchment due to storm events during the 27 month deployment period is illustrated. To support reproducible and collaborative research, the collected dataset and the source code of this work will be publicly available for research purposes.

Proceedings ◽  
2019 ◽  
Vol 48 (1) ◽  
pp. 30
Author(s):  
Luis Hamilton Pospissil Garbossa ◽  
Argeu Vanz ◽  
Matias Guilherme Boll ◽  
Hamilton Justino Vieira

The increasing frequency of extreme storm events has implications for the operation of sewer systems, storm water, flood control monitoring and tide level variations. Accurate and continuous monitor water level monitoring is demanded in different environments. Piezoelectric sensors are widely used for water level monitoring and work submerged in waters subject to the presence of solid particles, biological fouling and saltwater oxidation. This work aimed to develop a simple, low-cost methodology to protect sensors over long-term deployment. The results show that simple actions, costing less than 2 EUR, can protect and extend the lifecycle of equipment worth over 2000 EUR, ensuring continuous monitoring and maintaining quality measurements.


2021 ◽  
Author(s):  
Martin Le Mesnil ◽  
Jean-Baptiste Charlier ◽  
Roger Moussa ◽  
Yvan Caballero

<p>We propose a data-driven approach of concentration-discharge (C-Q) relationship analysis, including a new classification of C-Q hysteresis loop at the catchment scale, combined to a simulation of lateral Q and C at the reach scale. We analyse high-frequency, multiple-site records of Q and electrical conductivity (EC) in karst catchment outlets, in which EC informs on water residence time. At the catchment scale, contributions of pre-event water (PEW) and event water (EW) during storm events are investigated through hysteresis loops analysis, which allows inferring hydrological processes. Our new classification of hysteresis loops is based on loop mean slope and hysteresis index. At the reach scale, lateral Q and EC are simulated using a diffusive wave equation model, providing a more spatialized picture of PEW and EW contributions to streamflow during storm events. The methodology is applied to two catchments (Loue river and Cèze river) in France, including 8 gauging stations with hourly Q and EC time series covering 66 storm events.</p><p>For both catchments, a conceptual model of water origin and hydrological-processes seasonal and spatial variability is drawn. Regarding Loue catchment, summer and fall storm-events are characterized by contribution of PEW through piston-type flows, whereas decreasing EC values in winter and spring storm-events indicate the major contribution of EW through surface runoff and following fast infiltration in karst. EW contribution is increasing towards downstream. Regarding Cèze catchment, higher contributions of EW are observed, indicating that fast infiltration and surface runoff are the dominant processes, associated to a PEW signature in summer and fall. PEW contribution also increases in karstified areas. Intra-site water origin seasonality is mostly related to karst aquifer saturation state, whereas inter-site variability is linked to karst areas extension. These results are encouraging to extend this approach to a variety of sites, notably influenced by important surface water/groundwater interactions, and groundwater flooding.</p>


Micromachines ◽  
2020 ◽  
Vol 11 (5) ◽  
pp. 474 ◽  
Author(s):  
Bei Wang ◽  
Manuel Baeuscher ◽  
Xiaodong Hu ◽  
Markus Woehrmann ◽  
Katharina Becker ◽  
...  

A novel capacitive sensor for measuring the water-level and monitoring the water quality has been developed in this work by using an enhanced screen printing technology. A commonly used environment-friendly conductive polymer poly(3,4-ethylenedioxythiophene):poly (styrenesulfonate) (PEDOT:PSS) for conductive sensors has a limited conductivity due to its high sheet resistance. A physical treatment performed during the printing process has reduced the sheet resistance of printed PEDOT:PSS on polyethylenterephthalat (PET) substrate from 264.39 Ω/sq to 23.44 Ω/sq. The adhesion bonding force between printed PEDOT:PSS and the substrate PET is increased by using chemical treatment and tested using a newly designed adhesive peeling force test. Using the economical conductive ink PEDOT:PSS with this new physical treatment, our capacitive sensors are cost-efficient and have a sensitivity of up to 1.25 pF/mm.


2021 ◽  
Vol 9 (7) ◽  
pp. 784
Author(s):  
Arnida Lailatul Latifah ◽  
Durra Handri ◽  
Ayu Shabrina ◽  
Henokh Hariyanto ◽  
E. van Groesen

This paper shows simulations of high waves over different bathymetries to collect statistical information, particularly kurtosis and crest exceedance, that quantifies the occurrence of exceptionally extreme waves. This knowledge is especially pertinent for the design and operation of marine structures, safe ship trafficking, and mooring strategies for ships near the coast. Taking advantage of the flexibility to perform numerical simulations with HAWASSI software, with the aim of investigating the physical and statistical properties for these cases, this paper investigates the change in wave statistics related to changes in depth, breaking and differences between long- and short-crested waves. Three different types of bathymetry are considered: run-up to the coast with slope 1/20, waves over a shoal, and deep open-water waves. Simulations show good agreement in the examined cases compared with the available experimental data and simulations. Then predictive simulations for cases with a higher significant wave height illustrate the changes that may occur during storm events.


2021 ◽  
Author(s):  
Robin Kohrs ◽  
 Lotte de Vugt ◽  
Thomas Zieher ◽  
Alice Crespi ◽  
Mattia Rossi ◽  
...  

<p>Shallow landslides in alpine environments can constitute a serious threat to the exposed elements. The spatio-temporal occurrence of such slope movements is controlled by a combination of predisposing factors (e.g. topography), preparatory factors (e.g. wet periods, snow melting) and landslide triggers (e.g. heavy precipitation events).  </p><p>For large study areas, landslide assessments frequently focus either on the static predisposing factors to estimate landslide susceptibility using data-driven procedures, or exclusively on the triggering events to derive empirical rainfall thresholds. For smaller areas, dynamic physical models can reasonably be parameterized to simultaneously account for static and dynamic landslide controls.  </p><p>The recently accepted Proslide project aims to develop and test methods with the potential to improve the predictability of landslides for the Italian province of South Tyrol. It is envisaged to account for a variety of innovative input data at multiple spatio-temporal scales. In this context, we seek to exploit remote sensing data for the spatio-temporal description of landslide controlling factors (e.g. precipitation RADAR; satellite soil moisture) and to develop models that allow an integration of heterogeneous model inputs using both, data-driven approaches (regional scale) and physically-based models (catchment scale). This contribution presents the core ideas and methodical framework behind the Proslide project and its very first results (e.g. relationships between landslide observations and gridded daily precipitation data at regional scale). </p>


Sign in / Sign up

Export Citation Format

Share Document