scholarly journals A compact and low‐cost do‐it‐yourself water level meter

2021 ◽  
Vol 35 (5) ◽  
Author(s):  
Nils Michelsen
Author(s):  
Thais Pousada García ◽  
Jessica Garabal-Barbeira ◽  
Patricia Porto Trillo ◽  
Olalla Vilar Figueira ◽  
Cristina Novo Díaz ◽  
...  

Background: Assistive Technology (AT) refers to “assistive products and related systems and services developed for people to maintain or improve functioning and thereby to promote well-being”. Improving the process of design and creation of assistive products is an important step towards strengthening AT provision. Purpose: (1) to present a framework for designing and creating Low-Cost AT; (2) to display the preliminary results and evidence derived from applying the framework. Methodology: First, an evidence-based process was applied to develop and conceptualize the framework. Then, a pilot project to validate the framework was carried out. The sample was formed by 11 people with disabilities. The measure instruments were specific questionnaire, several forms of the Matching Person-Technology model, the Psychosocial Impact of Assistive Device Scale, and a tool to assess the usability and universal design of AT. Results: The framework integrates three phases: Identification (Design), Creation (Making the prototype), and Implementation (Outcome Measures), based on the principles of Design Thinking, and with a user-centered perspective. The preliminary results showed the coherence of the entire process and its applicability. The matching between person and device was high, representing the importance of involving the user in the design and selection of AT. Conclusions: The framework is a guide for professionals and users to apply a Low-Cost and Do-It-Yourself perspective to the provision of AT. It highlights the importance of monitoring the entire procedure and measuring the effects, by applying the outcome measures.


Micromachines ◽  
2020 ◽  
Vol 11 (5) ◽  
pp. 474 ◽  
Author(s):  
Bei Wang ◽  
Manuel Baeuscher ◽  
Xiaodong Hu ◽  
Markus Woehrmann ◽  
Katharina Becker ◽  
...  

A novel capacitive sensor for measuring the water-level and monitoring the water quality has been developed in this work by using an enhanced screen printing technology. A commonly used environment-friendly conductive polymer poly(3,4-ethylenedioxythiophene):poly (styrenesulfonate) (PEDOT:PSS) for conductive sensors has a limited conductivity due to its high sheet resistance. A physical treatment performed during the printing process has reduced the sheet resistance of printed PEDOT:PSS on polyethylenterephthalat (PET) substrate from 264.39 Ω/sq to 23.44 Ω/sq. The adhesion bonding force between printed PEDOT:PSS and the substrate PET is increased by using chemical treatment and tested using a newly designed adhesive peeling force test. Using the economical conductive ink PEDOT:PSS with this new physical treatment, our capacitive sensors are cost-efficient and have a sensitivity of up to 1.25 pF/mm.


Proceedings ◽  
2019 ◽  
Vol 48 (1) ◽  
pp. 30
Author(s):  
Luis Hamilton Pospissil Garbossa ◽  
Argeu Vanz ◽  
Matias Guilherme Boll ◽  
Hamilton Justino Vieira

The increasing frequency of extreme storm events has implications for the operation of sewer systems, storm water, flood control monitoring and tide level variations. Accurate and continuous monitor water level monitoring is demanded in different environments. Piezoelectric sensors are widely used for water level monitoring and work submerged in waters subject to the presence of solid particles, biological fouling and saltwater oxidation. This work aimed to develop a simple, low-cost methodology to protect sensors over long-term deployment. The results show that simple actions, costing less than 2 EUR, can protect and extend the lifecycle of equipment worth over 2000 EUR, ensuring continuous monitoring and maintaining quality measurements.


Biosensors ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 257
Author(s):  
Sebastian Fudickar ◽  
Eike Jannik Nustede ◽  
Eike Dreyer ◽  
Julia Bornhorst

Caenorhabditis elegans (C. elegans) is an important model organism for studying molecular genetics, developmental biology, neuroscience, and cell biology. Advantages of the model organism include its rapid development and aging, easy cultivation, and genetic tractability. C. elegans has been proven to be a well-suited model to study toxicity with identified toxic compounds closely matching those observed in mammals. For phenotypic screening, especially the worm number and the locomotion are of central importance. Traditional methods such as human counting or analyzing high-resolution microscope images are time-consuming and rather low throughput. The article explores the feasibility of low-cost, low-resolution do-it-yourself microscopes for image acquisition and automated evaluation by deep learning methods to reduce cost and allow high-throughput screening strategies. An image acquisition system is proposed within these constraints and used to create a large data-set of whole Petri dishes containing C. elegans. By utilizing the object detection framework Mask R-CNN, the nematodes are located, classified, and their contours predicted. The system has a precision of 0.96 and a recall of 0.956, resulting in an F1-Score of 0.958. Considering only correctly located C. elegans with an [email protected] IoU, the system achieved an average precision of 0.902 and a corresponding F1 Score of 0.906.


2021 ◽  
Vol 7 (2) ◽  
pp. 496-499
Author(s):  
Stadler B. Eng. Sebastian ◽  
Herbert Plischke ◽  
Christian Hanshans

Abstract Bioimpedance analysis is a label-free and easy approach to obtain information on cellular barrier integrity and cell viability more broadly. In this work, we introduce a small, low-cost, portable in vitro impedance measurement system for studies where a shadow-free exposure of the cells is a requirement. It can be controlled by a user-friendly web interface and can perform measurements automated and autonomously at short intervals. The system can be integrated into an existing IoT network for remote monitoring and indepth analyses. A single-board computer (SBC) serves as the central unit, to control, analyze, store and forward the measurement data from the single-chip impedance analyzer. Various materials and manufacturing methods were used to produce a purpose-built lid on top of a modified 24-well microtiter plate in a “do it yourself” fashion. Furthermore, three different sensor designs were developed utilizing anodic aluminum oxide (AAO) membranes and gold-plated electrodes. Preliminary tests with potassium chloride (KCl) showed first promising results.


Micromachines ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1452
Author(s):  
Taichi Murakami ◽  
Yu Kuwajima ◽  
Ardi Wiranata ◽  
Ayato Minaminosono ◽  
Hiroki Shigemune ◽  
...  

Demand for variable focus lens is increasing these days due to the rapid development of smart mobile devices and drones. However, conventional mechanical systems for lenses are generally complex, cumbersome, and rigid (e.g., for motors and gears). This research proposes a simple and compact liquid lens controlled by an electro hydro dynamics (EHD) pump. In our study, we propose a do-it-yourself (DIY) method to fabricate the low-cost EHD lens. The EHD lens consists of a polypropylene (PP) sheet for the exterior, a copper sheet for the electrodes, and an acrylic elastomer for the fluidic channel where dielectric fluid and pure water are filled. We controlled the lens magnification by changing the curvature of the liquid interface between the dielectric fluid and pure water. We evaluated the magnification performance of the lens. Moreover, we also established a numerical model to characterize the lens performance. We expect to contribute to the miniaturization of focus-tunable lenses.


Chemosensors ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 264
Author(s):  
Florin C. Loghin ◽  
José F. Salmerón ◽  
Paolo Lugli ◽  
Markus Becherer ◽  
Aniello Falco ◽  
...  

In this work, we present a do-it-yourself (DIY) approach for the environmental-friendly fabrication of printed electronic devices and sensors. The setup consists only of an automated handwriting robot and pens filled with silver conductive inks. Here, we thoroughly studied the fabrication technique and different optimized parameters. The best-achieved results were 300 mΩ/sq as sheet resistance with a printing resolution of 200 µm. The optimized parameters were used to manufacture fully functional electronics devices: a capacitive sensor and a RFID tag, essential for the remote reading of the measurements. This technique for printed electronics represents an alternative for fast-prototyping and ultra-low-cost fabrication because of both the cheap equipment required and the minimal waste of materials, which is especially interesting for the development of cost-effective sensors.


2021 ◽  
Author(s):  
Evangelos Skoubris ◽  
George Hloupis

<p>Among all natural disasters, river floods are becoming increasingly frequent. They present high risk and their impact can be fairly destructive and of strong economic, health, and social importance. Key tools to avoid their catastrophic results are the Early Warning Systems (EWS). An EWS usually monitors various physical quantities through a specific hardware, and produce data which after certain processing can detect and estimate the level of the risk.</p><p>In the current work we present the concept, the design, the application, and some preliminary data regarding a low cost imaging node, part of an EWS aimed for river floods. This EWS consists of various sensing nodes which are mainly equipped with water presence detectors, water level meters, water temperature sensors, along with the necessary networking capability. The novelty of this new node design is that it utilizes a VGA resolution camera which captures still images of a view of interest. The latter can be for example an implementation prone to defects in case of flood, such as a river basin level road crossing, or a bridge. The images can also provide constant monitoring of the river basin state, i.e. to detect the presence of any unwanted objects (waste or other natural & artificial bring materials). Through image processing the images can even provide some coarse data, i.e. water level measurements by utilizing vertical stripped rods within the field of view of the camera.</p><p>The ability to have a camera usually counteracts the IoT characteristics of an electronic device. Nevertheless, in this design the IoT character of the node was not constrained. The nodes have extended power autonomy (several months via Li-Ion battery, optionally solar rechargeable), present a small size, each node is network independent using GSM and LoRaWAN technology. The data usage is minimized by uploading only 2 QVGA images per day in normal operation (can be increased to a maximum of 48 VGA images per day, if required). In case of risk detection the node also supports the actuation of a local warning sign.</p>


2019 ◽  
Vol 112 (5) ◽  
pp. 2295-2301 ◽  
Author(s):  
Zachary C DeVries ◽  
Richard G Santangelo ◽  
Jonathan Crissman ◽  
Alonso Suazo ◽  
Madhavi L Kakumanu ◽  
...  

Abstract Despite limited efficacy data, do-it-yourself (DIY) insecticide products often promise low-cost alternatives to professional pest control. Total release foggers (TRFs, ‘bug bombs’), which are prominent DIY products, were recently shown to be ineffective at reducing German cockroach (Blattella germanica L.) infestations, in contrast to highly effective baits. However, the reason(s) for TRF failure remain unknown. Therefore, we investigated insecticide resistance of apartment-collected cockroaches from homes where TRFs failed. In topical (direct) application assays, resistance to cypermethrin (a common active ingredient in TRFs) was 202 ± 33 times that of a laboratory insecticide-susceptible population (based on LD50 ratios), while resistance to fipronil, a common bait active ingredient, was considerably lower at 14 ± 2 times that of the laboratory insecticide-susceptible population. The addition of PBO, a P450 inhibitor that synergizes pyrethroids, enhanced the efficacy of cypermethrin, but only at high doses of cypermethrin. Additionally, >96% of screened cockroaches possessed at least one copy of the L993F mutation in the voltage-gated sodium channel, known to confer resistance to pyrethroids (knockdown resistance, kdr). Because TRF treatments killed insecticide-susceptible sentinel cockroaches but failed to kill apartment-collected cockroaches, these results suggest that pyrethroid resistance is a major factor contributing to the failure of TRFs. Multiple mechanisms of resistance, including metabolic detoxification of the pyrethroids and kdr mutations that confer target-site insensitivity, suggest that TRFs would lack efficacy against German cockroaches in residential settings, where high levels of pyrethroid resistance have been documented globally.


Sign in / Sign up

Export Citation Format

Share Document