scholarly journals Displacement Sensor Based on a Small U-Shaped Single-Mode Fiber

Sensors ◽  
2019 ◽  
Vol 19 (11) ◽  
pp. 2531 ◽  
Author(s):  
Chuanxin Teng ◽  
Fangda Yu ◽  
Shijie Deng ◽  
Houquan Liu ◽  
Libo Yuan ◽  
...  

A simple structure and easily fabricated displacement sensor was proposed and demonstrated based on a bending-induced fiber interferometer. In the design, the fiber interferometer was formed only by bending the single-mode fiber into a small U-shape without splicing, tapering, or heating pre-processing, which effectively reduces the complexity of the fabrication process, greatly enhances the mechanical strength of the sensor, and lowers the cost in the displacement sensing applications. The displacement sensing performances for the sensor with different bending radii of 3.3 mm, 4.4 mm, 5.0 mm, and 6.3 mm were investigated. Experimental results showed that the sensor had a good linear response, and for the bending radii of 3.3, 4.4, 5.0, and 6.3 mm, the proposed sensors showed high sensitivities of 134.3, 105.1, 120.9, and 144.1 pm/μm, respectively.

2018 ◽  
Vol 18 (20) ◽  
pp. 8275-8279 ◽  
Author(s):  
Harith Ahmad ◽  
Siti Nabila Aidit ◽  
Shok Ing Ooi ◽  
Zian Cheak Tiu

2018 ◽  
Vol 2018 ◽  
pp. 1-6 ◽  
Author(s):  
Marta Nespereira ◽  
João M. P. Coelho ◽  
José Manuel Rebordão

The response of ultrashort-length CO2-induced long-period fiber grating (LPFG) sensors to torsion is reported. While engraving using CO2 laser radiation, the fiber is submitted to high tension allowing the obtainment of gratings with shorter lengths, down to 2.4 mm, which is almost one order of magnitude lower than the usual. Also, the fiber is only irradiated in one side, creating an asymmetrical profile leading to highly birefringent gratings. Sensitivity to axial twists is demonstrated, with values up to 0.15 nm/(rad/m) for the resonant wavelength shift and higher than 0.03 dBm/(rad/m) for the variation in the intensity (attenuation). Discrimination between rotation directions, clockwise and counterclockwise, was observed.


2012 ◽  
Author(s):  
Ricardo M. André ◽  
Claudecir R. Biazoli ◽  
Susana O. Silva ◽  
Manuel B. Marques ◽  
Cristiano M. B. Cordeiro ◽  
...  

2011 ◽  
Vol 130-134 ◽  
pp. 4185-4188
Author(s):  
Xiu Feng Yang ◽  
Chun Yu Zhang ◽  
Zheng Rong Tong

An extrinsic Fabry-Perot (F-P) interferometric (EFPI) sensor by using simple etching and fusing method is proposed and demonstrated. The cavity is formed by wet chemical etching of multi-mode fiber (MMF) end face in hydrofluoric acid solutions, and then it is fused to the end of a single-mode fiber (SMF) to form an extrinsic F-P structure. The strain and temperature of EFPI sensor are studied experimentally. The experimental results show that the interference wavelength becomes 2.648nm longer while the strain increases from 0N to 637N, and the strain sensitivity is about 0.004nm/N, and linearity is 0.999. The interference wavelength becomes 0.032nm shorter while the temperature increases from 20°C to 100°C. This kind of sensor has the many advantages of easy fabrication, good reliability, high-repetition, small size, low cost and mass-production, which offers great prospect for sensing applications.


2010 ◽  
Vol 161 ◽  
pp. 43-49 ◽  
Author(s):  
J.P. Carvalho ◽  
F. Magalhães ◽  
O. Frazão ◽  
J.L. Santos ◽  
F.M. Araújo ◽  
...  

Hollow-core photonic crystal glass fibers have a high potential for gas sensing applications, since large light-gas interaction lengths can be effectively attained. Nevertheless, in order to enhance effective diffusion of gas into the hollow-core fiber, multi-coupling gaps are often needed, which raise coupling loss issues that must be evaluated prior to the development of practical systems. In this paper, a study on the coupling losses dependence on lateral and axial gap misalignment for single-mode fiber and two different types of hollow-core photonic crystal glass fibers is carried out. In addition, an experimental technique on splicing these glass fibers is also described and some results are presented showing that low splice losses can be obtained with high reproducibility.


Author(s):  
Sijie He ◽  
Yushan Liu ◽  
Wenlin Feng ◽  
Bangxin Li ◽  
Xiao-Zhan Yang ◽  
...  

Abstract A carbon monoxide sensor based on Michelson interferometer combined with α-Fe2O3/rGOQDs composite film is proposed and fabricated. First, a waist-enlarged taper is formed between the single-mode fiber (SMF) and the no-core fiber (NCF), then the other end of the NCF is spliced with a section of thin-core fiber (TCF). Besides, the end of the TCF is coated with a layer of silver film to enhance the reflection. Thus, the Michelson interferometer of SMF-NCF-TCF is formed. The α-Fe2O3/rGOQDs composite film is deposited on the outside surface of TCF. The specific adsorption of carbon monoxide by the composite film leads to the change of the sensor’s effective refractive index (RI), realizing the detection of carbon monoxide. The results show that the interference intensity of the monitoring valley decreases with the increase of the concentration of carbon monoxide. The sensitivity of the sensor is 0.057 dBm/ppm, the detection limit of the sensor is 105 ppb, and the response time and recovery time are 70 s and 100 s, respectively. The sensor has the advantages of high sensitivity, high selectivity and simple structure, and it is expected to be applied for the detection of carbon monoxide gas with low concentration.


Sign in / Sign up

Export Citation Format

Share Document