Experimental Research of Strain and Temperature Based on EFPI Sensor

2011 ◽  
Vol 130-134 ◽  
pp. 4185-4188
Author(s):  
Xiu Feng Yang ◽  
Chun Yu Zhang ◽  
Zheng Rong Tong

An extrinsic Fabry-Perot (F-P) interferometric (EFPI) sensor by using simple etching and fusing method is proposed and demonstrated. The cavity is formed by wet chemical etching of multi-mode fiber (MMF) end face in hydrofluoric acid solutions, and then it is fused to the end of a single-mode fiber (SMF) to form an extrinsic F-P structure. The strain and temperature of EFPI sensor are studied experimentally. The experimental results show that the interference wavelength becomes 2.648nm longer while the strain increases from 0N to 637N, and the strain sensitivity is about 0.004nm/N, and linearity is 0.999. The interference wavelength becomes 0.032nm shorter while the temperature increases from 20°C to 100°C. This kind of sensor has the many advantages of easy fabrication, good reliability, high-repetition, small size, low cost and mass-production, which offers great prospect for sensing applications.

Sensors ◽  
2017 ◽  
Vol 17 (3) ◽  
pp. 555 ◽  
Author(s):  
Lu Yan ◽  
Zhiguo Gui ◽  
Guanjun Wang ◽  
Yongquan An ◽  
Jinyu Gu ◽  
...  

A high-sensitivity, low-cost, ultrathin, hollow fiber micro bubble structure was proposed; such a bubble can be used to develop a high-sensitivity strain sensor based on a Fabry–Perot interferometer (FPI). The micro bubble is fabricated at the fiber tip by splicing a glass tube to a single mode fiber (SMF) and then the glass tube is filled with gas in order to expand and form a micro bubble. The sensitivity of the strain sensor with a cavity length of about 155 μm and a bubble wall thickness of about 6 μm was measured to be up to 8.14 pm/μϵ.


2007 ◽  
Vol 364-366 ◽  
pp. 1203-1206 ◽  
Author(s):  
Yun Jiang Rao ◽  
Ming Deng ◽  
Tao Zhu ◽  
Qing Tao Tang ◽  
Guang Hua Cheng

This paper reports a novel micro extrinsic fiber-optic F-P interferometric (MEFPI) sensor micromachined on a conventional optical fiber (Corning SMF-28) by using a near-infrared femtosecond laser, for the first time to the best of our knowledge. The strain and temperature characteristics of such a sensor were investigated and the experimental results show that the strain and temperature sensitivities are 0.006nm/με and -0.0017nm/°C, respectively. This type of MEFPI sensors has a number of advantages when compared with conventional EFPI sensors, such as easy fabrication, high integration degree, good reliability, low temperature cross-sensitivity, low cost, and capability for mass-production, offering great potential for a wide range of sensing applications.


Sensors ◽  
2019 ◽  
Vol 19 (8) ◽  
pp. 1819 ◽  
Author(s):  
Zhoubing Li ◽  
Yue Zhang ◽  
Chunqiao Ren ◽  
Zhengqi Sui ◽  
Jin Li

In this paper, a miniature Fabry-Perot temperature probe was designed by using polydimethylsiloxane (PDMS) to encapsulate a microfiber in one cut of hollow core fiber (HCF). The microfiber tip and a common single mode fiber (SMF) end were used as the two reflectors of the Fabry-Perot interferometer. The temperature sensing performance was experimentally demonstrated with a sensitivity of 11.86 nm/°C and an excellent linear fitting in the range of 43–50 °C. This high sensitivity depends on the large thermal-expansion coefficient of PDMS. This temperature sensor can operate no higher than 200 °C limiting by the physicochemical properties of PDMS. The low cost, fast fabrication process, compact structure and outstanding resolution of less than 10−4 °C enable it being as a promising candidate for exploring the temperature monitor or controller with ultra-high sensitivity and precision.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Georg Rademacher ◽  
Benjamin J. Puttnam ◽  
Ruben S. Luís ◽  
Tobias A. Eriksson ◽  
Nicolas K. Fontaine ◽  
...  

AbstractData rates in optical fiber networks have increased exponentially over the past decades and core-networks are expected to operate in the peta-bit-per-second regime by 2030. As current single-mode fiber-based transmission systems are reaching their capacity limits, space-division multiplexing has been investigated as a means to increase the per-fiber capacity. Of all space-division multiplexing fibers proposed to date, multi-mode fibers have the highest spatial channel density, as signals traveling in orthogonal fiber modes share the same fiber-core. By combining a high mode-count multi-mode fiber with wideband wavelength-division multiplexing, we report a peta-bit-per-second class transmission demonstration in multi-mode fibers. This was enabled by combining three key technologies: a wideband optical comb-based transmitter to generate highly spectral efficient 64-quadrature-amplitude modulated signals between 1528 nm and 1610 nm wavelength, a broadband mode-multiplexer, based on multi-plane light conversion, and a 15-mode multi-mode fiber with optimized transmission characteristics for wideband operation.


Laser Physics ◽  
2021 ◽  
Vol 32 (1) ◽  
pp. 015101
Author(s):  
Gangxiao Yan ◽  
Weihua Zhang ◽  
Peng Li ◽  
Qiuhao Jiang ◽  
Meng Wu ◽  
...  

Abstract A switchable and tunable erbium-doped fiber laser with a linear cavity based on fiber Bragg gratings embedded in Sagnac rings is proposed and experimentally verified. Due to the stress birefringence effect and the polarized hole burning effect, which are introduced into the single-mode fiber in the polarization controllers (PCs) by the PCs, the designed laser can achieve seven kinds of laser-states output including three kinds of single-wavelength laser states, three kinds of dual-wavelength laser states and one kind of triple-wavelength laser state. The optical signal-to-noise ratios of the output wavelengths are all higher than 52 dB, and the wavelength shifts are all less than 0.04 nm. Furthermore, the temperature tuning of the wavelength range is also researched, which is about 1.2 nm. Due to advantages, such as low cost, simple structure, easy switching and multiple laser states, the designed laser has great application potential in laser radar, optical fiber sensing and so on.


2012 ◽  
Vol 19 (2) ◽  
pp. 64-70 ◽  
Author(s):  
Hisham Kadhum Hisham ◽  
Ahmad Fauzi Abas ◽  
Ghafour Amouzad Mahdiraji ◽  
Mohd Adzir Mahdi ◽  
Ahmad Shukri Muhammad Noor

2018 ◽  
Vol 2018 ◽  
pp. 1-6 ◽  
Author(s):  
Marta Nespereira ◽  
João M. P. Coelho ◽  
José Manuel Rebordão

The response of ultrashort-length CO2-induced long-period fiber grating (LPFG) sensors to torsion is reported. While engraving using CO2 laser radiation, the fiber is submitted to high tension allowing the obtainment of gratings with shorter lengths, down to 2.4 mm, which is almost one order of magnitude lower than the usual. Also, the fiber is only irradiated in one side, creating an asymmetrical profile leading to highly birefringent gratings. Sensitivity to axial twists is demonstrated, with values up to 0.15 nm/(rad/m) for the resonant wavelength shift and higher than 0.03 dBm/(rad/m) for the variation in the intensity (attenuation). Discrimination between rotation directions, clockwise and counterclockwise, was observed.


2015 ◽  
Vol 11 (6) ◽  
pp. 434-437 ◽  
Author(s):  
Xing-hu Fu ◽  
Qin Liu ◽  
Yan-li Xiu ◽  
Hai-yang Xie ◽  
Chuan-qing Yang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document