scholarly journals Pure SH1 Guided-Wave Generation Method with Dual Periodic-Permanent-Magnet Electromagnetic Acoustic Transducers for Plates Inspection

Sensors ◽  
2019 ◽  
Vol 19 (13) ◽  
pp. 3019 ◽  
Author(s):  
Gongzhe Qiu ◽  
Xiaochun Song ◽  
Xu Zhang ◽  
Jun Tu ◽  
Tao Chen

High frequency guided-waves offer a trade-off between the high sensitivity of local bulk ultrasonic thickness measurements and the large area scanning of lower frequency guided-waves, so it has been a growing interest for corrosion inspection with the dispersive SH1 mode. However, according to the dispersive curve, it is hard to generate the pure SH1 mode since the non-dispersive SH0 mode will be excited simultaneously. Thus, this paper investigates a transducer design method to generate a pure SH1 guided-wave, where the dual periodic-permanent-magnet electromagnetic acoustic transducers (PPM EMATs) are placed on exactly opposite positions either side of the plate symmetrically. The suppression effect for SH0 and the enhancement effect for SH1 of the dual PPM EMATs are mainly discussed by theoretical analysis and simulation analysis, and the influence of positioning errors of PPM EMATs placed on opposite sides of the plate on its performances are analyzed. Employing the proposed dual PPM EMATs, some experiments are performed to verify the reliability of finite element simulation. The results indicate that the dual PPM EMATs can suppress the SH0 mode and generate the pure SH1 mode effectively. Moreover, the longitudinal and lateral positioning errors can affect the dual PPM EMATs performances significantly.

2014 ◽  
Vol 614 ◽  
pp. 287-290
Author(s):  
Le Chen ◽  
Yue Min Wang ◽  
Hai Quan Geng

Shear horizontal (SH) guided waves have been proved to be a viable method in the Non-Destructive Evaluation (NDE). Electromagnetic acoustic transducers (EMAT) can excite SH waves easily. By bonding the Fe-Co alloy to the test sample, the SH guided waves based on magnetostriction effect can be used to detect the flaw in nonferromagnetic material. The principle of exciting and receiving SH waves is introduced, and an experiment is carried out to validate the result.


2020 ◽  
Vol 62 (8) ◽  
pp. 494-497
Author(s):  
Xu Zhang ◽  
Sheng Feng ◽  
Jun Tu ◽  
Xiaochun Song

This work proposes the use of a Halbach magnet structure to enhance the generation efficiency of shear horizontal (SH) guided waves on a plate. SH waves are normally generated using periodic permanent magnet (PPM) electromagnetic acoustic transducers (EMATs). Two PPM configurations are designed using a Halbach magnet array and the enhancements of the static magnetic fields of the two magnet arrays are validated by the finite element method, indicating that these configurations can increase the peak flux density compared with the conventional configuration. Numerical analysis and experimental investigations indicate that a racetrack coil combined with either a rectangular or triangular Halbach magnet array can enhance the amplitude of the SH guided wave by factors of ∼1.2 and ∼1.1, respectively, and that the rectangular array performs better and is more cost effective.


Author(s):  
Peng Zuo ◽  
Peter Huthwaite

Quantitative guided wave thickness mapping in plate-like structures and pipelines is of significant importance for the petrochemical industry to accurately estimate the minimum remaining wall thickness in the presence of corrosion, as guided waves can inspect a large area without needing direct access. Although a number of inverse algorithms have been studied and implemented in guided wave reconstruction, a primary assumption is widely used: the three-dimensional guided wave inversion of thickness is simplified as a two-dimensional acoustic wave inversion of velocity, with the dispersive nature of the waves linking thickness to velocity. This assumption considerably simplifies the inversion procedure; however, it makes it impossible to account for mode conversion. In reality, mode conversion is quite common in guided wave scattering with asymmetric wall loss, and compared with non-converted guided wave modes, converted modes may provide greater access to valuable information about the thickness variation, which, if exploited, could lead to improved performance. Geometrical full waveform inversion (GFWI) is an ideal tool for this, since it can account for mode conversion. In this paper, quantitative thickness reconstruction based on GFWI is developed in a plate cross-section and applied to study the performance of thickness reconstruction using mode conversion.


Sensors ◽  
2019 ◽  
Vol 19 (8) ◽  
pp. 1856 ◽  
Author(s):  
Rohan Soman ◽  
Pawel Kudela ◽  
Kaleeswaran Balasubramaniam ◽  
Shishir Kumar Singh ◽  
Pawel Malinowski

Guided waves (GW) allow fast inspection of a large area and hence have attracted research interest from the structural health monitoring (SHM) community. Thus, GW-based SHM is ideal for thin structures such as plates, pipes, etc., and is finding applications in several fields like aerospace, automotive, wind energy, etc. The GW propagate along the surface of the sample and get reflected from discontinuities in the structure in the form of boundaries and damage. Through proper signal processing of the reflected waves based on their time of arrival, the damage can be detected and isolated. For complex structures, a higher number of sensors may be required, which increases the cost of the equipment, as well as the mass. Thus, there is an effort to reduce the number of sensors without compromising the quality of the monitoring achieved. It is of utmost importance that the entire structure can be investigated. Hence, it is necessary to optimize the locations of the sensors in order to maximize the coverage while limiting the number of sensors used. A genetic algorithm (GA)-based optimization strategy was proposed by the authors for use in a simple aluminum plate. This paper extends the optimization methodology for other shape plates and presents experimental, analytical, and numerical studies. The sensitivity studies have been carried out by changing the relative weights of the application demands and presented in the form of a Pareto front. The Pareto front allows comparison of the relative importance of the different application demands, and an appropriate choice can be made based on the information provided.


Sign in / Sign up

Export Citation Format

Share Document