scholarly journals Physical Unclonable Functions in the Internet of Things: State of the Art and Open Challenges

Sensors ◽  
2019 ◽  
Vol 19 (14) ◽  
pp. 3208 ◽  
Author(s):  
Armin Babaei ◽  
Gregor Schiele

Attacks on Internet of Things (IoT) devices are on the rise. Physical Unclonable Functions (PUFs) are proposed as a robust and lightweight solution to secure IoT devices. The main advantage of a PUF compared to the current classical cryptographic solutions is its compatibility with IoT devices with limited computational resources. In this paper, we investigate the maturity of this technology and the challenges toward PUF utilization in IoT that still need to be addressed.

2018 ◽  
Author(s):  
Henry Tranter

Security is always at the forefront of developing technologies. One can seldom go a week without hearing of a new data breach or hacking attempt from various groups around the world, often taking advantage of a simple flaw in a system’s architecture. The Internet of Things (IoT) is one of these developing technologies which may be at risk of such attacks. IoT devices are becoming more and more prevalent in everyday life. From keeping track of an individual’s health, to suggesting meals from items available in an individual’s fridge, these technologies are taking a much larger role in the personal lives of their users. With this in mind, how is security being considered in the development of these technologies? Are these devices that monitor individual’s personal lives just additional vectors for potential data theft? Throughout this survey, various approaches to the development of security systems concerning IoT devices in the home will be discussed, compared, and contrasted in the hope of providing an ideal solution to the problems this technology may produce.


Author(s):  
Clinton Fernandes ◽  
Vijay Sivaraman

This article examines the implications of selected aspects of the Telecommunications (Interception and Access) Amendment (Data Retention) Act 2015, which was passed by the Australian Parliament in March 2015. It shows how the new law has strengthened protections for privacy. However, focusing on the investigatory implications, it shows how the law provides a tactical advantage to investigators who pursue whistleblowers and investigative journalists. The article exposes an apparent discrepancy in the way ‘journalist’ is defined across different pieces of legislation. It argues that although legislators’ interest has been overwhelmingly focused on communications data, the explosion of data generated by the so-called Internet-of-Things (IoT) is as important or more. It shows how the sensors in selected IoT devices lead to a loss of user control and will enable non-stop, involuntary and ubiquitous monitoring of individuals. It suggests that the law will need to be amended further once legislators and investigators’ knowledge of the potential of IoT increases. 


Author(s):  
Tanweer Alam

In next-generation computing, the role of cloud, internet and smart devices will be capacious. Nowadays we all are familiar with the word smart. This word is used a number of times in our daily life. The Internet of Things (IoT) will produce remarkable different kinds of information from different resources. It can store big data in the cloud. The fog computing acts as an interface between cloud and IoT. The extension of fog in this framework works on physical things under IoT. The IoT devices are called fog nodes, they can have accessed anywhere within the range of the network. The blockchain is a novel approach to record the transactions in a sequence securely. Developing a new blockchains based middleware framework in the architecture of the Internet of Things is one of the critical issues of wireless networking where resolving such an issue would result in constant growth in the use and popularity of IoT. The proposed research creates a framework for providing the middleware framework in the internet of smart devices network for the internet of things using blockchains technology. Our main contribution links a new study that integrates blockchains to the Internet of things and provides communication security to the internet of smart devices.


2018 ◽  
Author(s):  
Henry Tranter

Security is always at the forefront of developing technologies. One can seldom go a week without hearing of a new data breach or hacking attempt from various groups around the world, often taking advantage of a simple flaw in a system’s architecture. The Internet of Things (IoT) is one of these developing technologies which may be at risk of such attacks. IoT devices are becoming more and more prevalent in everyday life. From keeping track of an individual’s health, to suggesting meals from items available in an individual’s fridge, these technologies are taking a much larger role in the personal lives of their users. With this in mind, how is security being considered in the development of these technologies? Are these devices that monitor individual’s personal lives just additional vectors for potential data theft? Throughout this survey, various approaches to the development of security systems concerning IoT devices in the home will be discussed, compared, and contrasted in the hope of providing an ideal solution to the problems this technology may produce.


Author(s):  
Kundankumar Rameshwar Saraf ◽  
Malathi P. Jesudason

This chapter explores the encryption techniques used for the internet of things (IoT). The security algorithm used for IoT should follow many constraints of an embedded system. Hence, lightweight cryptography is an optimum security solution for IoT devices. This chapter mainly describes the need for security in IoT, the concept of lightweight cryptography, and various cryptographic algorithms along with their shortcomings given IoT. This chapter also describes the principle of operation of all the above algorithms along with their security analysis. Moreover, based on the algorithm size (i.e., the required number of gate equivalent, block size, key size, throughput, and execution speed of the algorithm), the chapter reports the comparative analysis of their performance. The chapter discusses the merits and demerits of these algorithms along with their use in the IoT system.


Sensors ◽  
2020 ◽  
Vol 20 (23) ◽  
pp. 6761
Author(s):  
Anjan Bandyopadhyay ◽  
Vikash Kumar Singh ◽  
Sajal Mukhopadhyay ◽  
Ujjwal Rai ◽  
Fatos Xhafa ◽  
...  

In the Internet of Things (IoT) + Fog + Cloud architecture, with the unprecedented growth of IoT devices, one of the challenging issues that needs to be tackled is to allocate Fog service providers (FSPs) to IoT devices, especially in a game-theoretic environment. Here, the issue of allocation of FSPs to the IoT devices is sifted with game-theoretic idea so that utility maximizing agents may be benign. In this scenario, we have multiple IoT devices and multiple FSPs, and the IoT devices give preference ordering over the subset of FSPs. Given such a scenario, the goal is to allocate at most one FSP to each of the IoT devices. We propose mechanisms based on the theory of mechanism design without money to allocate FSPs to the IoT devices. The proposed mechanisms have been designed in a flexible manner to address the long and short duration access of the FSPs to the IoT devices. For analytical results, we have proved the economic robustness, and probabilistic analyses have been carried out for allocation of IoT devices to the FSPs. In simulation, mechanism efficiency is laid out under different scenarios with an implementation in Python.


2020 ◽  
pp. 1260-1284
Author(s):  
Laura Belli ◽  
Simone Cirani ◽  
Luca Davoli ◽  
Gianluigi Ferrari ◽  
Lorenzo Melegari ◽  
...  

The Internet of Things (IoT) is expected to interconnect billions (around 50 by 2020) of heterogeneous sensor/actuator-equipped devices denoted as “Smart Objects” (SOs), characterized by constrained resources in terms of memory, processing, and communication reliability. Several IoT applications have real-time and low-latency requirements and must rely on architectures specifically designed to manage gigantic streams of information (in terms of number of data sources and transmission data rate). We refer to “Big Stream” as the paradigm which best fits the selected IoT scenario, in contrast to the traditional “Big Data” concept, which does not consider real-time constraints. Moreover, there are many security concerns related to IoT devices and to the Cloud. In this paper, we analyze security aspects in a novel Cloud architecture for Big Stream applications, which efficiently handles Big Stream data through a Graph-based platform and delivers processed data to consumers, with low latency. The authors detail each module defined in the system architecture, describing all refinements required to make the platform able to secure large data streams. An experimentation is also conducted in order to evaluate the performance of the proposed architecture when integrating security mechanisms.


2019 ◽  
Vol 265 ◽  
pp. 07014
Author(s):  
Alexander Shiler ◽  
Elizaveta Stepanova

At present, the Internet market of things is constantly expanding; it has covered almost all the most important areas: transport, housing and communal services, industry, agriculture, telecommunications and information technology. In connection with the constant increase in the number of attacks on IoT-devices, the issue of standardization of this technology is quite acute. The features of the of existing solutions and the new proposed Russian NB-Fi standard for IoT are presented in this article from the point of view of information security.


Sign in / Sign up

Export Citation Format

Share Document