scholarly journals Privacy-Preserving Multi-Receiver Certificateless Broadcast Encryption Scheme with De-Duplication

Sensors ◽  
2019 ◽  
Vol 19 (15) ◽  
pp. 3370 ◽  
Author(s):  
Jianhong Zhang ◽  
Peirong Ou

Nowadays, the widely deployed and high performance Internet of Things (IoT) facilitates the communication between its terminal nodes. To enhance data sharing among terminal devices and ensure the recipients’ privacy protection, a few anonymous multi-recipient broadcast encryption (AMBE) proposals are recently given. Nevertheless, the majority of these AMBE proposals are only proven be securely against adaptively chosen plain-text attack (CPA) or selectively chosen ciphertext attack (CCA). Furthermore, all AMBE proposals are subjected to key escrow issue due to inherent characteristics of the ID-based public cryptography (ID-PKC), and cannot furnish secure de-duplication detection. However, for cloud storage, it is very important for expurgating duplicate copies of the identical message since de-duplication can save the bandwidth of network and storage space. To address the above problems, in the work, we present a privacy-preserving multi-receiver certificateless broadcast encryption scheme with de-duplication (PMCBED) in the cloud-computing setting based on certificateless cryptography and anonymous broadcast encryption. In comparison with the prior AMBE proposals, our scheme has the following three characteristics. First, it can fulfill semantic security notions of data-confidentiality and receiver identity anonymity, whereas the existing proposals only accomplish them by formalizing the weaker security models. Second, it achieves duplication detection of the ciphertext for the identical message encrypted with our broadcast encryption. Finally, it also avoids the key escrow problem of the AMBE schemes.

Author(s):  
Chunli Liu ◽  
Yang Bai ◽  
Ji Wang ◽  
Ziming Qiu ◽  
Huan Pang

Two-dimensional (2D) materials with structures having diverse features are promising for application in energy conversion and storage. A stronger layered orientation can guarantee fast charge transfer along the 2D planes...


2021 ◽  
Vol 1 (2) ◽  
pp. 340-364
Author(s):  
Rui Araújo ◽  
António Pinto

Along with the use of cloud-based services, infrastructure, and storage, the use of application logs in business critical applications is a standard practice. Application logs must be stored in an accessible manner in order to be used whenever needed. The debugging of these applications is a common situation where such access is required. Frequently, part of the information contained in logs records is sensitive. In this paper, we evaluate the possibility of storing critical logs in a remote storage while maintaining its confidentiality and server-side search capabilities. To the best of our knowledge, the designed search algorithm is the first to support full Boolean searches combined with field searching and nested queries. We demonstrate its feasibility and timely operation with a prototype implementation that never requires access, by the storage provider, to plain text information. Our solution was able to perform search and decryption operations at a rate of, approximately, 0.05 ms per line. A comparison with the related work allows us to demonstrate its feasibility and conclude that our solution is also the fastest one in indexing operations, the most frequent operations performed.


Electronics ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1389
Author(s):  
Jiwon Lee ◽  
Jihye Kim ◽  
Hyunok Oh

In public key broadcast encryption, anyone can securely transmit a message to a group of receivers such that privileged users can decrypt it. The three important parameters of the broadcast encryption scheme are the length of the ciphertext, the size of private/public key, and the performance of encryption/decryption. It is suggested to decrease them as much as possible; however, it turns out that decreasing one increases the other in most schemes. This paper proposes a new broadcast encryption scheme for tiny Internet of Things (IoT) equipment (BESTIE), minimizing the private key size in each user. In the proposed scheme, the private key size is O(logn), the public key size is O(logn), the encryption time per subset is O(logn), the decryption time is O(logn), and the ciphertext text size is O(r), where n denotes the maximum number of users, and r indicates the number of revoked users. The proposed scheme is the first subset difference-based broadcast encryption scheme to reduce the private key size O(logn) without sacrificing the other parameters. We prove that our proposed scheme is secure under q-Simplified Multi-Exponent Bilinear Diffie-Hellman (q-SMEBDH) in the standard model.


2014 ◽  
Vol 543-547 ◽  
pp. 2418-2421
Author(s):  
Yong Wang

In this paper we introduce cross tree and block mathematical principles into the design of database system, divide the time sequence and storage space of computer database system, establish the mathematical model and algorithm of computer resources database system, and design the test database system. In this paper, we use high performance interface of Display Port, by way of coupling to communicate on two port control, and use RHEL 6.2 Linux virtual machine to do simulation experiment on process of database system. Through the simulation we find the API which is called by Read, Close, Mmap, Stat, Fstat is similar. It is consistent with the actual situation, and verifies the reliability of the program. Finally, we apply the database system to the network database construction of sports literature resources in the new town of Poyang Lake area. It reaches the effect that sport resources are shared by all. It provides technical support for the application of computer database system.


2021 ◽  
Author(s):  
Mircea-Adrian Digulescu

It has long been known that cryptographic schemes offering provably unbreakable security exist, namely the One Time Pad (OTP). The OTP, however, comes at the cost of a very long secret key - as long as the plain-text itself. In this paper we propose an encryption scheme which we (boldly) claim offers the same level of security as the OTP, while allowing for much shorter keys, of size polylogarithmic in the computing power available to the adversary. The Scheme requires a large sequence of truly random words, of length polynomial in the both plain-text size and the logarithm of the computing power the adversary has. We claim that it ensures such an attacker cannot discern the cipher output from random data, except with small probability. We also show how it can be adapted to allow for several plain-texts to be encrypted in the same cipher output, with almost independent keys. Also, we describe how it can be used in lieu of a One Way Function.


Sign in / Sign up

Export Citation Format

Share Document