scholarly journals Noble Metal-Assisted Surface Plasmon Resonance Immunosensors

Sensors ◽  
2020 ◽  
Vol 20 (4) ◽  
pp. 1003 ◽  
Author(s):  
Jin-Ha Choi ◽  
Jin-Ho Lee ◽  
Joohyung Son ◽  
Jeong-Woo Choi

For the early diagnosis of several diseases, various biomarkers have been discovered and utilized through the measurement of concentrations in body fluids such as blood, urine, and saliva. The most representative analytical method for biomarker detection is an immunosensor, which exploits the specific antigen-antibody immunoreaction. Among diverse analytical methods, surface plasmon resonance (SPR)-based immunosensors are emerging as a potential detection platform due to high sensitivity, selectivity, and intuitive features. Particularly, SPR-based immunosensors could detect biomarkers without labeling of a specific detection probe, as typical immunosensors such as enzyme-linked immunosorbent assay (ELISA) use enzymes like horseradish peroxidase (HRP). In this review, SPR-based immunosensors utilizing noble metals such as Au and Ag as SPR-inducing factors for the measurement of different types of protein biomarkers, including viruses, microbes, and extracellular vesicles (EV), are briefly introduced.

Coatings ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1165
Author(s):  
Klavdiya Korotkova ◽  
Dashi Bainov ◽  
Serafim Smirnov ◽  
Igor Yunusov ◽  
Yury Zhidik

The developing area of plasmonics has led to the possibility of creating a new type of high-speed, high-sensitivity optical sensor for biological environment analysis. The functional layer of such biosensors are nanoscale films of noble metals. In this work we suggest using a thin film of titanium as a functional layer. This paper presents the results of the research on electrical and optical characteristics of 5 to 80 nm thick titanium films deposited on sapphire substrates by magnetron sputtering. It is shown that surface plasmon resonance is consistently observed in the investigated titanium films and the theoretical grounds of surface plasmon resonance excitement is given. In structures with titanium films less than 15 nm thick, local plasmon resonance is observed along with surface plasmon resonance. Local plasmon resonance is more sensitive to the surface state of a thin film of titanium, which on the one hand increases the sensitivity of a biosensor, and on the other hand imposes restrictions on the parameters of nanoscale films.


PIERS Online ◽  
2008 ◽  
Vol 4 (7) ◽  
pp. 746-750 ◽  
Author(s):  
Bing-Hung Chen ◽  
Yih-Chau Wang ◽  
Jia-Hng Lin

Nanomaterials ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 1325 ◽  
Author(s):  
Ru-Jing Sun ◽  
Hung Ji Huang ◽  
Chien-Nan Hsiao ◽  
Yu-Wei Lin ◽  
Bo-Huei Liao ◽  
...  

A TiN-based substrate with high reusability presented high-sensitivity refractive index measurements in a home-built surface plasmon resonance (SPR) heterodyne phase interrogation system. TiN layers with and without additional inclined-deposited TiN (i-TiN) layers on glass substrates reached high bulk charge carrier densities of 1.28 × 1022 and 1.91 × 1022 cm−3, respectively. The additional 1.4 nm i-TiN layer of the nanorod array presented a detection limit of 6.1 × 10−7 RIU and was higher than that of the 46 nm TiN layer at 1.2 × 10−6 RIU when measuring the refractive index of a glucose solution. Furthermore, the long-term durability of the TiN-based substrate demonstrated by multiple processing experiments presented a high potential for various practical sensing applications.


2021 ◽  
Vol 48 (1) ◽  
pp. 0106002
Author(s):  
李钢敏 Li Gangmin ◽  
李致远 Li Zhiyuan ◽  
李正冉 Li Zhengran ◽  
王锦民 Wang Jinmin ◽  
夏历 Xia Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document