scholarly journals Soft Bimodal Sensor Array Based on Conductive Hydrogel for Driving Status Monitoring

Sensors ◽  
2020 ◽  
Vol 20 (6) ◽  
pp. 1641
Author(s):  
Wentao Dong ◽  
Daojin Yao ◽  
Lin Yang

Driving status monitoring is important to safety driving which could be adopted to improve driving behaviors through hand gesture detection by wearable electronics. The soft bimodal sensor array (SBSA) composed of strain sensor array based on ionic conductive hydrogels and capacitive pressure sensor array based on ionic hydrogel electrodes is designed to monitor drivers’ hand gesture. SBSA is fabricated and assembled by the stretchable functional and structural materials through a sol–gel process for guaranteeing the overall softness of SBSA. The piezoresistive strain and capacitive pressure sensing abilities of SBSA are evaluated by the data acquisition system and signal analyzer with the external physical stimuli. The gauge factor (GF) of the strain sensor is 1.638 under stretched format, and –0.726 under compressed format; sensitivity of the pressure sensor is 0.267 kPa−1 below 3.45 and 0.0757 kPa−1 in the range of 3.45–12 kPa, which are sensitive enough to hand gesture detection and driving status monitoring. The simple recognition method for the driver’s status behavior is proposed to identify the driver’s behaviors with the piezoresistive properties of conductive polymers, and the turning angles are computed by the strain and pressure values from SBSA. This work demonstrates an effective approach to integrate SBSA seamlessly into an existing driving environment for driving status monitoring, expanding the applications of SBSA in wearable electronics.

2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Guanzheng Wu ◽  
Siming Li ◽  
Jiayu Hu ◽  
Manchen Dong ◽  
Ke Dong ◽  
...  

Purpose This paper aims to study the working principle of the capacitive pressure sensor and explore the distribution of pressure acting on the surface of the capacitor. Herein, a kind of high sensitivity capacitive pressure sensor was prepared by overlaying carbon fibers (CFs) on the surfaces of the thermoplastic elastomer (TPE), the TPE with high elasticity is a dielectric elastomer for the sensor and the CFs with excellent electrical conductivity were designed as the conductor. Design/methodology/approach Due to the excellent mechanical properties and electrical conductivity of CFs, it was designed as the conductor layer for the TPE/CFs capacitive pressure sensor via laminating CFs on the surfaces of the columnar TPE. Then, a ‘#' type structure of the capacitive pressure sensor was designed and fabricated. Findings The ‘#' type of capacitive pressure sensor of TPE/CFs composite was obtained in high sensitivity with a gauge factor of 2.77. Furthermore, the change of gauge factor values of the sensor under 10 per cent of applied strains was repeated for 1,000 cycles, indicating its outstanding sensing stability. Moreover, the ‘#' type capacitive pressure sensor of TPE/CFs was consisted of several capacitor arrays via laminating CFs, which could detect the distribution of pressure. Research limitations/implications The TPE/CFs capacitive pressure sensor was easily fabricated with high sensitivity and quick responsiveness, which is desirably applied in wearable electronics, robots, medical devices, etc. Originality/value The outcome of this study will help to fabricate capacitive pressure sensors with high sensitivity and outstanding sensing stability.


2020 ◽  
Vol 8 (4) ◽  
pp. 296-307
Author(s):  
Konstantin Krestovnikov ◽  
Aleksei Erashov ◽  
Аleksandr Bykov

This paper presents development of pressure sensor array with capacitance-type unit sensors, with scalable number of cells. Different assemblies of unit pressure sensors and their arrays were considered, their characteristics and fabrication methods were investigated. The structure of primary pressure transducer (PPT) array was presented; its operating principle of array was illustrated, calculated reference ratios were derived. The interface circuit, allowing to transform the changes in the primary transducer capacitance into voltage level variations, was proposed. A prototype sensor was implemented; the dependency of output signal power from the applied force was empirically obtained. In the range under 30 N it exhibited a linear pattern. The sensitivity of the array cells to the applied pressure is in the range 134.56..160.35. The measured drift of the output signals from the array cells after 10,000 loading cycles was 1.39%. For developed prototype of the pressure sensor array, based on the experimental data, the average signal-to-noise ratio over the cells was calculated, and equaled 63.47 dB. The proposed prototype was fabricated of easily available materials. It is relatively inexpensive and requires no fine-tuning of each individual cell. Capacitance-type operation type, compared to piezoresistive one, ensures greater stability of the output signal. The scalability and adjustability of cell parameters are achieved with layered sensor structure. The pressure sensor array, presented in this paper, can be utilized in various robotic systems.


2010 ◽  
Vol 2010 ◽  
pp. 1-5 ◽  
Author(s):  
Fernando Martinez ◽  
Gregorio Obieta ◽  
Ion Uribe ◽  
Tomasz Sikora ◽  
Estibalitz Ochoteco

The design and characterization of polymer-based self-standing flexible strain sensors are presented in this work. Properties as lightness and flexibility make them suitable for the measurement of strain in applications related with wearable electronics such as robotics or rehabilitation devices. Several sensors have been fabricated to analyze the influence of size and electrical conductivity on their behavior. Elongation and applied charge were precisely controlled in order to measure different parameters as electrical resistance, gauge factor (GF), hysteresis, and repeatability. The results clearly show the influence of size and electrical conductivity on the gauge factor, but it is also important to point out the necessity of controlling the hysteresis and repeatability of the response for precision-demanding applications.


Nanomaterials ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 889
Author(s):  
Lu Liu ◽  
Libo Wang ◽  
Xuqing Liu ◽  
Wenfeng Yuan ◽  
Mengmeng Yuan ◽  
...  

Flexible and comfortable wearable electronics are as a second skin for humans as they can collect the physiology of humans and show great application in health and fitness monitoring. MXene Ti3C2Tx have been used in flexible electronic devices for their unique properties such as high conductivity, excellent mechanical performance, flexibility, and good hydrophilicity, but less research has focused on MXene-based cotton fabric strain sensors. In this work, a high-performance wearable strain sensor composed of two-dimensional (2D) MXene d-Ti3C2Tx nanomaterials and cotton fabric is reported. Cotton fabrics were selected as substrate as they are comfortable textiles. As the active material in the sensor, MXene d-Ti3C2Tx exhibited an excellent conductivity and hydrophilicity and adhered well to the fabric fibers by electrostatic adsorption. The gauge factor of the MXene@cotton fabric strain sensor reached up to 4.11 within the strain range of 15%. Meanwhile, the sensor possessed high durability (>500 cycles) and a low strain detection limit of 0.3%. Finally, the encapsulated strain sensor was used to detect subtle or large body movements and exhibited a rapid response. This study shows that the MXene@cotton fabric strain sensor reported here have great potential for use in flexible, comfortable, and wearable devices for health monitoring and motion detection.


Sign in / Sign up

Export Citation Format

Share Document