scholarly journals Design and Evaluation of Flooding-Based Location Service in Vehicular Ad Hoc Networks

Sensors ◽  
2020 ◽  
Vol 20 (8) ◽  
pp. 2389 ◽  
Author(s):  
Paul Mühlethaler ◽  
Éric Renault ◽  
Selma Boumerdassi

Location-based routing protocols for vehicular ad hoc networks (VANETs) use location information to determine routing decisions. This information is provided by a location service that is queried by nodes in order to properly forward packets to communication partners. This paper presents the semiflooding location service, a proactive flooding-based location service that drastically reduces the number of update packets sent over the network compared to traditional flooding-based location services. This goal is achieved by each node partially forwarding location information. We present both deterministic and probabilistic approaches for this algorithm, which remains very simple. A mathematical model is proposed to show the effectiveness of this solution. The cases of homogeneous 1D, 2D, and 3D networks were studied for both deterministic and probabilistic forwarding decisions. We compare our algorithm with simple flooding and with the multipoint-relay (MPR) flooding of the optimized-link-state-routing (OLSR) protocol, and we show that our algorithm, despite being very simple, has excellent scalability properties. The mean number of generated messages ranges with the mean number of the neighbors of one random network node.

Author(s):  
Raul Aquino Santos

Location-Based Routing Algorithm with Cluster-Based Flooding (LORA-CBF) employs two location services: Simple and Reactive. A Simple Location Service has been implemented for neighbors nodes, and for faraway nodes, a Reactive Location Service is employed. In LORA-CBF, the source node includes the location of its destination in each packet. The packet moves hop by hop through the network, forwarded along via cooperating intermediates nodes. At each node, a purely local decision is made to forward the packet to the neighbor that is geographically closest to the destination. However, location information by itself does not guarantee the transmission between neighboring nodes in vehicular ad-hoc networks. Mobility and contention of wireless media may cause loss of packets being transferred, and this is very important aspect to consider in the development of wireless routing algorithms. Here, the authors have addressed this problem by including a predictive algorithm in LORA-CBF.


Author(s):  
Zhaomin Mo ◽  
Hao Zhu ◽  
Kia Makki ◽  
Niki Pissinou ◽  
Masoumeh Karimi

Vehicular ad-hoc networks (VANETs) have been gained importance for the inter-vehicle communication that supports local communication between vehicles without any expensive infrastructure and considerable configuration efforts. How to provide light-weight and scalable location management service which facilitates geographic routing in VANETs remains a fundamental issue. In this paper we will present a novel peer-to-peer location management protocol, called PLM, to provide location management service in VANETs. PLM makes use of high mobility in VANETs to disseminate vehicles’ historical location information over the network. A vehicle is able to predict current location of other vehicles with Kalman filtering technique. Our theoretical analysis shows that PLM is able to achieve high location information availability with a low protocol overhead and latency. The simulation results indicate that PLM can provide fairly accurate location information with quite low communication overhead in VANETs.. [Article copies are available for purchase from InfoSci-on-Demand.com]


2010 ◽  
pp. 1520-1537
Author(s):  
Zhaomin Mo ◽  
Hao Zhu ◽  
Kia Makki ◽  
Niki Pissinou ◽  
Masoumeh Karimi

Vehicular ad-hoc networks (VANETs) have been gained importance for the inter-vehicle communication that supports local communication between vehicles without any expensive infrastructure and considerable configuration efforts. How to provide light-weight and scalable location management service which facilitates geographic routing in VANETs remains a fundamental issue. In this paper we will present a novel peer-to-peer location management protocol, called PLM, to provide location management service in VANETs. PLM makes use of high mobility in VANETs to disseminate vehicles’ historical location information over the network. A vehicle is able to predict current location of other vehicles with Kalman filtering technique. Our theoretical analysis shows that PLM is able to achieve high location information availability with a low protocol overhead and latency. The simulation results indicate that PLM can provide fairly accurate location information with quite low communication overhead in VANETs


Computers ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 6 ◽  
Author(s):  
Abdallah Sobehy ◽  
Eric Renault ◽  
Paul Muhlethaler

Location services for ad-hoc networks are of indispensable value for a wide range of applications, such as the Internet of Things (IoT) and vehicular ad-hoc networks (VANETs). Each context requires a solution that addresses the specific needs of the application. For instance, IoT sensor nodes have resource constraints (i.e., computational capabilities), and so a localization service should be highly efficient to conserve the lifespan of these nodes. We propose an optimized energy-aware and low computational solution, requiring 3-GPS equipped nodes (anchor nodes) in the network. Moreover, the computations are lightweight and can be implemented distributively among nodes. Knowing the maximum range of communication for all nodes and distances between 1-hop neighbors, each node localizes itself and shares its location with the network in an efficient manner. We simulate our proposed algorithm in a NS-3 simulator, and compare our solution with state-of-the-art methods. Our method is capable of localizing more nodes (≈90% of nodes in a network with an average degree ≈10).


Sign in / Sign up

Export Citation Format

Share Document