scholarly journals Position Certainty Propagation: A Localization Service for Ad-Hoc Networks

Computers ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 6 ◽  
Author(s):  
Abdallah Sobehy ◽  
Eric Renault ◽  
Paul Muhlethaler

Location services for ad-hoc networks are of indispensable value for a wide range of applications, such as the Internet of Things (IoT) and vehicular ad-hoc networks (VANETs). Each context requires a solution that addresses the specific needs of the application. For instance, IoT sensor nodes have resource constraints (i.e., computational capabilities), and so a localization service should be highly efficient to conserve the lifespan of these nodes. We propose an optimized energy-aware and low computational solution, requiring 3-GPS equipped nodes (anchor nodes) in the network. Moreover, the computations are lightweight and can be implemented distributively among nodes. Knowing the maximum range of communication for all nodes and distances between 1-hop neighbors, each node localizes itself and shares its location with the network in an efficient manner. We simulate our proposed algorithm in a NS-3 simulator, and compare our solution with state-of-the-art methods. Our method is capable of localizing more nodes (≈90% of nodes in a network with an average degree ≈10).

2006 ◽  
Vol 07 (01) ◽  
pp. 37-49 ◽  
Author(s):  
ARJAN DURRESI ◽  
VAMSI PARUCHURI ◽  
MIMOZA DURRESI ◽  
LEONARD BAROLLI

We present Delay-Energy Aware Routing (DEAP) a novel protocol for heterogeneous wireless ad hoc networks. DEAP is a crosslayer scheme that: first, manages adaptively the energy control by controlling the wakeup cycle of sensors based on the experienced packet delay; and second, rout packet in each hoc by distributing the load a group of neighboring nodes. The primary result of DEAP is that it enables a flexible and wide range of tradeoffs between the packet delay and the energy consumption. Therefore, DEAP supports delay sensitive applications of heterogeneous networks that include sensors and actors. DEAP is scalable to the change in network size, node type, node density and topology. DEAP accommodates seamlessly such network changes, including the presence of actors in heterogeneous sensor networks. Indeed, while DEAP does not count on actors, it takes advantage of them, and uses their resources when possible, thus reducing the energy consumption of sensor nodes. Through analysis and simulation evaluations, we show that DEAP improves the packet delay and network lifetime compared to other protocols.


Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 2900
Author(s):  
Thokozani Felix Vallent ◽  
Damien Hanyurwimfura ◽  
Chomora Mikeka

Vehicular Ad hoc networks (VANETs) as spontaneous wireless communication technology of vehicles has a wide range of applications like road safety, navigation and other electric car technologies, however its practicability is greatly hampered by cyber-attacks. Due to message broadcasting in an open environment during communication, VANETs are inherently vulnerable to security and privacy attacks. However to address the cyber-security issues with optimal computation overhead is a matter of current security research challenge. So this paper designs a secure and efficient certificate-less aggregate scheme (ECLAS) for VANETs applicable in a smart grid scenario. The proposed scheme is based on elliptic curve cryptography to provide conditional privacy-preservation by incorporating usage of time validated pseudo-identification for communicating vehicles besides sorting out the KGC (Key Generation Center) escrow problem. The proposed scheme is comparatively more efficient to relevant related research work because it precludes expensive computation operations likes bilinear pairings as shown by the performance evaluation. Similarly, communication cost is within the ideal range to most related works while considering the security requirements of VANETs system applicable in a smart grid environment.


2021 ◽  
Vol 10 (5) ◽  
pp. 2627-2635
Author(s):  
Mustafa Maad Hamdi ◽  
Lukman Audah ◽  
Mohammed Salah Abood ◽  
Sami Abduljabbar Rashid ◽  
Ahmed Shamil Mustafa ◽  
...  

Ad hoc vehicle networks (VANET) are being established as a primary form of mobile ad hoc networks (MANET) and a critical infrastructure to provide vehicle passengers with a wide range of safety applications. VANETs are increasingly common nowadays because it is connecting to a wide range of invisible services. The security of VANETs is paramount as their future use must not jeopardize their users' safety and privacy. The security of these VANETs is essential for the benefit of secure and effective security solutions and facilities, and uncertainty remains, and research in this field remains fast increasing. We discussed the challenges in VANET in this survey. Were vehicles and communication in VANET are efficient to ensure communication between vehicles to vehicles (V2V), vehicles to infrastructures (V2I). Clarified security concerns have been discussed, including confidentiality, authentication, integrity, availableness, and non-repudiation. We have also discussed the potential attacks on security services. According to analysis and performance evaluations, this paper shows that the ACPN is both feasible and appropriate for effective authentication in the VANET. Finally, the article found that in VANETs, encryption and authentication are critical.


Author(s):  
Mahmood A. Al-shareeda ◽  
Mohammed Anbar ◽  
Murtadha A. Alazzawi ◽  
Selvakumar Manickam ◽  
Iznan H. Hasbullah

Recently, vehicular ad hoc networks (VANETs) have been garnering significant inter-est from the people involved in transportation field. Nowadays automotive manufactur-ers have already supplying vehicles with multitude of road sensors that provides many useful characteristics. VANET communication not only offers the drivers and passen-gers with the various safety related services but also provides a wide range of valuable applications. However, the inherent openness of the wireless communication medium used by VANETs exposes vehicles to various security and privacy issues. Researchers have proposed many security schemes to solve the issues mentioned above for the widespread deployment of VANETs. However, these schemes failed to fulfill all as-pects of security and privacy requirements. Besides, these schemes have not provided the performance parameters such as computation and communication costs. The pri-mary emphasis of this paper is on the taxonomy of security schemes based conditional privacy-preserving with respect to strengths and limitations. Besides, a comparison be-tween these schemes related to the model of security and privacy requirements, attacks, and performance parameters is provided. Finally, this paper critically reviews the re-lated works by taking into consideration the design and development of all VANETs security and privacy schemes, this paper could serve as a guide and reference.


Webology ◽  
2020 ◽  
Vol 17 (2) ◽  
pp. 706-716
Author(s):  
T. Kirthiga Devi ◽  
R. Mohanakrishnan ◽  
T. Karthick

Vehicular ad-hoc networks were introduced by applying certain principles based on MANET where nodes are high mobility vehicles. Because of this mobility of vehicles topology were rapidly changing, hence Security issue will predominant in VANET. Since network is accessible from every node, any malicious node can easily targets or get access into the network. In order to eliminate this issue a RSU based authentication should be introduced. Also in order to secure the message broadcasting between nodes and eliminating certain attack like Man-In-The-Middle (MITM) attack, a cryptographic technique called cascade encryption are used to broadcast the message from one vehicle to other vehicle in a secure and efficient way. With the help these two concepts we can able to satisfy the privacy and security requirements of Vehicular ad-hoc networks in an efficient manner.


Sensors ◽  
2020 ◽  
Vol 20 (8) ◽  
pp. 2389 ◽  
Author(s):  
Paul Mühlethaler ◽  
Éric Renault ◽  
Selma Boumerdassi

Location-based routing protocols for vehicular ad hoc networks (VANETs) use location information to determine routing decisions. This information is provided by a location service that is queried by nodes in order to properly forward packets to communication partners. This paper presents the semiflooding location service, a proactive flooding-based location service that drastically reduces the number of update packets sent over the network compared to traditional flooding-based location services. This goal is achieved by each node partially forwarding location information. We present both deterministic and probabilistic approaches for this algorithm, which remains very simple. A mathematical model is proposed to show the effectiveness of this solution. The cases of homogeneous 1D, 2D, and 3D networks were studied for both deterministic and probabilistic forwarding decisions. We compare our algorithm with simple flooding and with the multipoint-relay (MPR) flooding of the optimized-link-state-routing (OLSR) protocol, and we show that our algorithm, despite being very simple, has excellent scalability properties. The mean number of generated messages ranges with the mean number of the neighbors of one random network node.


Sign in / Sign up

Export Citation Format

Share Document