scholarly journals Joint Acquisition Estimator of Modern GNSS Tiered Signals Using Block Pre-Correlation Processing of Secondary Code

Sensors ◽  
2020 ◽  
Vol 20 (10) ◽  
pp. 2965
Author(s):  
Jiří Svatoň ◽  
František Vejražka

Objective is a joint primary and secondary code (SC) acquisition estimator of tiered Global Navigation Satellite Systems (GNSS) signals. The estimator is based on the Parallel Code Search algorithm (PCS) combined with the Single-Block-Zero-Padding (SBZP) and the Pre-correlation Coherent Accumulation (PCA). The PCA realizes the extension of the coherent integration time in front of the PCS. However, the PCS with the SBZP and the PCA is affected by a navigation/SC bit transition problem due to its cyclic property of a computed Cross-Ambiguity Function (CAF). This CAF is degraded by diverse parasitic fragments and is not directly applicable for an acquisition. A novel analysis of this mechanism and its impact is presented. Then, the proposed modified SBZP (mSBZP) modified PCA (mPCA) PCS estimator is constructed, which does not degrade the CAF. The mSBZP allows the use of the PCS algorithm in the presence of SC bit transition, while the mPCA decreases the number of PCS algorithm calculations by a factor of SC chip count due to SC pre-correlation processing. The algorithm has the same detection performance in comparison with conventional Double-Block-Zero-Padding (DBZP). However, it allows using the PCS of half-length with longer latency up to a factor of SC chip count.

2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Davide Margaria ◽  
Beatrice Motella ◽  
Fabio Dovis

One of the most promising features of the modernized global navigation satellite systems signals is the presence of pilot channels that, being data-transition free, allow for increasing the coherent integration time of the receivers. Generally speaking, the increased integration time allows to better average the thermal noise component, thus improving the postcorrelation SNR of the receiver in the acquisition phase. On the other hand, for a standalone receiver which is not aided or assisted, the acquisition architecture requires that only the pilot channel is processed, at least during the first steps of the procedure. The aim of this paper is to present a detailed investigation on the impact of the code cross-correlation properties in the reception of Galileo E1 Open Service and GPS L1C civil signals. Analytical and simulation results demonstrate that the S-curve of the code synchronization loop can be affected by a bias around the lock point. This effect depends on the code cross-correlation properties and on the receiver setup. Furthermore, in these cases, the sensitivity of the receiver to other error sources might increase, and the paper shows how in presence of an interfering signal the pseudorange bias can be magnified and lead to relevant performance degradation.


2021 ◽  
Vol 14 (1) ◽  
pp. 35
Author(s):  
Yang Nan ◽  
Shirong Ye ◽  
Jingnan Liu ◽  
Bofeng Guo ◽  
Shuangcheng Zhang ◽  
...  

In recent years, Global Navigation Satellite System Reflectometry (GNSS-R) technology has made considerable progress with the increasing of GNSS-R satellites in orbit, the improvements of GNSS-R data processing technology, and the expansion of its geophysical applications. Meanwhile, with the modernization and evolution of GNSS systems, more signal sources and signal modulation modes are available. The effective use of the signals at different frequencies or from new GNSS systems can improve the accuracy, reliability, and resolution of the GNSS-R data products. This paper analyses the signal-to-noise ratio (SNR) of the GNSS-R measurements from Galileo and BeiDou-3 (BDS-3) systems, which is one of the important indicators to measure the quality of GNSS-R data. The multi-GNSS (GPS, Galileo and BDS-3) complex waveform products generated from the raw intermediate frequency data from TechDemoSat-1 (TDS-1) satellite and Cyclone Global Navigation Satellite System (CYGNSS) constellation are used for such analyses. The SNR and normalized SNR (NSNR) of the reflected signals from Galileo and BDS-3 satellites are compared to these from GPS. Preliminary results show that the GNSS-R SNRs from Galileo and BDS-3 are ∼1–2 dB lower than the GNSS-R measurements from GPS, which could be due to the power of the transmitted power and the bandwidth of the receiver. In addition, the effect of coherent integration time on GNSS-R SNR is also assessed for different GNSS signals. It is shown that the SNR of the reflected signals can be improved by using longer coherent integration time (∼0.4–0.8 dB with 2 ms coherent integration and ∼0.6–1.2 dB with 4 ms coherent integration). In addition, it is also shown that the SNR can be improved more efficiently (∼0.2–0.4 dB) for reflected BDS-3 and Galileo signals than for GPS. These results can provide useful references for the design of future spaceborne GNSS-R instrument compatible with reflections from multi-GNSS constellations.


Sensors ◽  
2019 ◽  
Vol 19 (6) ◽  
pp. 1369 ◽  
Author(s):  
Yan Cheng ◽  
Qing Chang ◽  
Hao Wang ◽  
Xianxu Li

For global navigation satellite system receivers, Kalman filter (KF)-based tracking loops show remarkable advantages in terms of tracking sensitivity and robustness compared with conventional tracking loops. However, to improve the tracking sensitivity further, increasing the coherent integration time is necessary, but it is typically limited by the navigation data bit sign transition. Moreover, for standard KF-based tracking receivers, the KF parameters are initialized by the acquired results. However, especially under weak signal conditions, the acquired results have frequency errors that are too large for KF-based tracking to converge rapidly to a steady state. To solve these problems, a two-stage KF-based tracking architecture is proposed to track weaker signals and achieve faster convergence. In the first stage, coarse tracking refines the acquired results and achieves bit synchronization. Then, in the second stage, fine tracking initializes the KF-based tracking by using the coarse tracking results and extends the coherent integration time without the bit sign transition limitation. This architecture not only utilizes the self-tuning technique of the KF to improve the tracking sensitivity, but also adopts the two-stage to reduce the convergence time of the KF-based tracking. Simulation results demonstrate that the proposed method outperforms conventional tracking techniques in terms of tracking sensitivity. Furthermore, the proposed method is compared with the standard KF-based tracking approach, proving that the proposed method converges more rapidly.


Author(s):  
M. O. Ehigiator

Geophysical investigation was conducted at Okada community in ovia North Local Govertment area of Edo state to determine the prospect of aquifer zone. The Petrozenith PZ-02 Terrameter, one of the Electrical Resistivity Equipment was used to conduct a Vertical Electrical Sounding (VES) in the study area. The Garmin Etrex 10 Global Navigation satellite systems (GNSS) was used to acquire Geodetic coordinates of point where VES observations were made. This research was carried out as a pre-drilling Hydro-geophysical survey conducted for the purpose of surveying and studying the proposed water borehole site at Okada Community that has suffered acute water problems for a very long time. There have been series of boreholes drilled in the studied area but all are dry wells. This survey was conducted to investigate the subsurface complexity of the sites in respect of lithology and to recommend the total drill depth based on the prospective aquifer unit so identified. Result of interpretation suggests that the area is underlain with substantive aquiferous formation but at a depth not exceeding 121.60 m (398.95 ft), which is the lower aquifer unit. The value of elevation at point of observation referenced to mean sea level is 94 m.


2021 ◽  
Vol 95 (2) ◽  
Author(s):  
Mirjam Bilker-Koivula ◽  
Jaakko Mäkinen ◽  
Hannu Ruotsalainen ◽  
Jyri Näränen ◽  
Timo Saari

AbstractPostglacial rebound in Fennoscandia causes striking trends in gravity measurements of the area. We present time series of absolute gravity data collected between 1976 and 2019 on 12 stations in Finland with different types of instruments. First, we determine the trends at each station and analyse the effect of the instrument types. We estimate, for example, an offset of 6.8 μgal for the JILAg-5 instrument with respect to the FG5-type instruments. Applying the offsets in the trend analysis strengthens the trends being in good agreement with the NKG2016LU_gdot model of gravity change. Trends of seven stations were found robust and were used to analyse the stabilization of the trends in time and to determine the relationship between gravity change rates and land uplift rates as measured with global navigation satellite systems (GNSS) as well as from the NKG2016LU_abs land uplift model. Trends calculated from combined and offset-corrected measurements of JILAg-5- and FG5-type instruments stabilized in 15 to 20 years and at some stations even faster. The trends of FG5-type instrument data alone stabilized generally within 10 years. The ratio between gravity change rates and vertical rates from different data sets yields values between − 0.206 ± 0.017 and − 0.227 ± 0.024 µGal/mm and axis intercept values between 0.248 ± 0.089 and 0.335 ± 0.136 µGal/yr. These values are larger than previous estimates for Fennoscandia.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Matthias Gilgien ◽  
Philip Crivelli ◽  
Josef Kröll ◽  
Live S. Luteberget ◽  
Erich Müller ◽  
...  

AbstractIn Super-G alpine ski racing mean speed is nearly as high as in Downhill. Hence, the energy dissipated in typical impact accidents is similar. However, unlike Downhill, on Super-G courses no training runs are performed. Accordingly, speed control through course design is a challenging but important task to ensure safety in Super-G. In four male World Cup alpine Super-G races, terrain shape, course setting and the mechanics of a high-level athlete skiing the course were measured with differential global navigation satellite systems (dGNSS). The effects of course setting on skier mechanics were analysed using a linear mixed effects model. To reduce speed by 0.5 m/s throughout a turn, the gate offset needs to be increased by + 51%. This change simultaneously leads to a decrease in minimal turn radius (− 19%), an increase in impulse (+ 27%) and an increase in maximal ground reaction force (+ 6%). In contrast, the same reduction in speed can also be achieved by a − 13% change in vertical gate distance, which also leads to a small reduction in minimal turn radius (− 4%) impulse (− 2%), and no change in maximal ground reaction force; i.e. fewer adverse side effects in terms of safety. It appears that shortening the vertical gate distance is a better and safer way to reduce speed in Super-G than increasing the gate offset.


Sign in / Sign up

Export Citation Format

Share Document