scholarly journals Apple Leaf Diseases Recognition Based on An Improved Convolutional Neural Network

Sensors ◽  
2020 ◽  
Vol 20 (12) ◽  
pp. 3535 ◽  
Author(s):  
Qian Yan ◽  
Baohua Yang ◽  
Wenyan Wang ◽  
Bing Wang ◽  
Peng Chen ◽  
...  

Scab, frogeye spot, and cedar rust are three common types of apple leaf diseases, and the rapid diagnosis and accurate identification of them play an important role in the development of apple production. In this work, an improved model based on VGG16 is proposed to identify apple leaf diseases, in which the global average poling layer is used to replace the fully connected layer to reduce the parameters and a batch normalization layer is added to improve the convergence speed. A transfer learning strategy is used to avoid a long training time. The experimental results show that the overall accuracy of apple leaf classification based on the proposed model can reach 99.01%. Compared with the classical VGG16, the model parameters are reduced by 89%, the recognition accuracy is improved by 6.3%, and the training time is reduced to 0.56% of that of the original model. Therefore, the deep convolutional neural network model proposed in this work provides a better solution for the identification of apple leaf diseases with higher accuracy and a faster convergence speed.

Sensors ◽  
2019 ◽  
Vol 19 (19) ◽  
pp. 4161 ◽  
Author(s):  
Hang ◽  
Zhang ◽  
Chen ◽  
Zhang ◽  
Wang

Plant leaf diseases are closely related to people's daily life. Due to the wide variety of diseases, it is not only time-consuming and labor-intensive to identify and classify diseases by artificial eyes, but also easy to be misidentified with having a high error rate. Therefore, we proposed a deep learning-based method to identify and classify plant leaf diseases. The proposed method can take the advantages of the neural network to extract the characteristics of diseased parts, and thus to classify target disease areas. To address the issues of long training convergence time and too-large model parameters, the traditional convolutional neural network was improved by combining a structure of inception module, a squeeze-and-excitation (SE) module and a global pooling layer to identify diseases. Through the Inception structure, the feature data of the convolutional layer were fused in multi-scales to improve the accuracy on the leaf disease dataset. Finally, the global average pooling layer was used instead of the fully connected layer to reduce the number of model parameters. Compared with some traditional convolutional neural networks, our model yielded better performance and achieved an accuracy of 91.7% on the test data set. At the same time, the number of model parameters and training time have also been greatly reduced. The experimental classification on plant leaf diseases indicated that our method is feasible and effective.


2021 ◽  
Vol 11 (6) ◽  
pp. 2838
Author(s):  
Nikitha Johnsirani Venkatesan ◽  
Dong Ryeol Shin ◽  
Choon Sung Nam

In the pharmaceutical field, early detection of lung nodules is indispensable for increasing patient survival. We can enhance the quality of the medical images by intensifying the radiation dose. High radiation dose provokes cancer, which forces experts to use limited radiation. Using abrupt radiation generates noise in CT scans. We propose an optimal Convolutional Neural Network model in which Gaussian noise is removed for better classification and increased training accuracy. Experimental demonstration on the LUNA16 dataset of size 160 GB shows that our proposed method exhibit superior results. Classification accuracy, specificity, sensitivity, Precision, Recall, F1 measurement, and area under the ROC curve (AUC) of the model performance are taken as evaluation metrics. We conducted a performance comparison of our proposed model on numerous platforms, like Apache Spark, GPU, and CPU, to depreciate the training time without compromising the accuracy percentage. Our results show that Apache Spark, integrated with a deep learning framework, is suitable for parallel training computation with high accuracy.


Author(s):  
N. Devi

Abstract: This paper focuses on the task of recognizing handwritten Hindi characters using a Convolutional Neural Network (CNN) based. The recognized characters can then be stored digitally in the computer or used for other purposes. The dataset used is obtained from the UC Irvine Machine Learning Repository which contains 92,000 images divided into training (80%) and test set (20%). It contains different forms of handwritten Devanagari characters written by different individuals which can be used to train and test handwritten text recognizers. It contains four CNN layers followed by three fully connected layers for recognition. Grayscale handwritten character images are used as input. Filters are applied on the images to extract different features at each layer. This is done by the Convolution operation. The two other main operations involved are Pooling and Flattening. The output of the CNN layers is fed to the fully connected layers. Finally, the chance or probability score of each character is determined and the character with the highest probability score is shown as the output. A recognition accuracy of 98.94% is obtained. Similar models exist for the purpose, but the proposed model achieved a better performance and accuracy than some of the earlier models. Keywords: Devanagari characters, Convolutional Neural Networks, Image Processing


2020 ◽  
Vol 224 (1) ◽  
pp. 191-198
Author(s):  
Xinliang Liu ◽  
Tao Ren ◽  
Hongfeng Chen ◽  
Yufeng Chen

SUMMARY In this paper, convolutional neural networks (CNNs) were used to distinguish between tectonic and non-tectonic seismicity. The proposed CNNs consisted of seven convolutional layers with small kernels and one fully connected layer, which only relied on the acoustic waveform without extracting features manually. For a single station, the accuracy of the model was 0.90, and the event accuracy could reach 0.93. The proposed model was tested using data from January 2019 to August 2019 in China. The event accuracy could reach 0.92, showing that the proposed model could distinguish between tectonic and non-tectonic seismicity.


Symmetry ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 867
Author(s):  
Fen Liu ◽  
Yuxuan Liu ◽  
Hongqiang Sang

Various defects are formed on the workpiece surface during the production process. Workpiece surface defects are classified according to various characteristics, which includes a bumped surface, scratched surface and pit surface. Suppliers analyze the cause of workpiece surface defects through the defect types and thus determines the subsequent processing. Therefore, the correct classification is essential regarding workpiece surface defects. In this paper, a multi-classifier decision-level fusion classification model for workpiece surface defects based on a convolutional neural network (CNN) was proposed. In the proposed model, the histogram of oriented gradient (HOG) was used to extract the features of the second fully connected layer of the CNN, and the features of the HOG were further extracted by using the local binary patterns (LBP), which was called the HOG–LBP feature extraction. Finally, this paper designed a symmetry ensemble classifier, which was used to classify the features of the last fully connected layer of the CNN and the features of the HOG–LBP. The comprehensive decision was made by fusing the classification results of the symmetry structure channels. The experiments were carried out, and the results showed that the proposed model could improve the accuracy of the workpiece surface defect classification.


PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0260510
Author(s):  
Shijun Li ◽  
Lili Fu ◽  
Yu Sun ◽  
Ye Mu ◽  
Lin Chen ◽  
...  

In actual farms, individual livestock identification technology relies on large models with slow recognition speeds, which seriously restricts its practical application. In this study, we use deep learning to recognize the features of individual cows. Alexnet is used as a skeleton network for a lightweight convolutional neural network that can recognise individual cows in images with complex backgrounds. The model is improved for multiple multiscale convolutions of Alexnet using the short-circuit connected BasicBlock to fit the desired values and avoid gradient disappearance or explosion. An improved inception module and attention mechanism are added to extract features at multiple scales to enhance the detection of feature points. In experiments, side-view images of 13 cows were collected. The proposed method achieved 97.95% accuracy in cow identification with a single training time of only 6 s, which is one-sixth that of the original Alexnet. To verify the validity of the model, the dataset and experimental parameters were kept constant and compared with the results of Vgg16, Resnet50, Mobilnet V2 and GoogLenet. The proposed model ensured high accuracy while having the smallest parameter size of 6.51 MB, which is 1.3 times less than that of the Mobilnet V2 network, which is famous for its light weight. This method overcomes the defects of traditional methods, which require artificial extraction of features, are often not robust enough, have slow recognition speeds, and require large numbers of parameters in the recognition model. The proposed method works with images with complex backgrounds, making it suitable for actual farming environments. It also provides a reference for the identification of individual cows in images with complex backgrounds.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Mingyu Gao ◽  
Peng Song ◽  
Fei Wang ◽  
Junyan Liu ◽  
Andreas Mandelis ◽  
...  

Wood defects are quickly identified from an optical image based on deep learning methodology, which effectively improves wood utilization. Traditional neural network techniques have not yet been employed for wood defect detection due to long training time, low recognition accuracy, and nonautomatical extraction of defect image features. In this work, a model (so-called ReSENet-18) for wood knot defect detection that combined deep learning and transfer learning is proposed. The “squeeze-and-excitation” (SE) module is firstly embedded into the “residual basic block” structure for a “SE-Basic-Block” module construction. This model has the advantages of the features that are extracted in the channel dimension, and it is fused in multiscale with original features. Instantaneously, the fully connected layer is replaced with a global average pooling; consequently, the model parameters could be reduced effectively. The experimental results show that the accuracy has reached 99.02%, meanwhile the training time is also reduced. It shows that the proposed deep convolutional neural network based on ReSENet-18 combined with transfer learning can improve the accuracy of defect recognition and has a potential application in the detection of wood knot defects.


2019 ◽  
Vol 24 (3) ◽  
pp. 220-228
Author(s):  
Gusti Alfahmi Anwar ◽  
Desti Riminarsih

Panthera merupakan genus dari keluarga kucing yang memiliki empat spesies popular yaitu, harimau, jaguar, macan tutul, singa. Singa memiliki warna keemasan dan tidak memilki motif, harimau memiliki motif loreng dengan garis-garis panjang, jaguar memiliki tubuh yang lebih besar dari pada macan tutul serta memiliki motif tutul yang lebih lebar, sedangkan macan tutul memiliki tubuh yang sedikit lebih ramping dari pada jaguar dan memiliki tutul yang tidak terlalu lebar. Pada penelitian ini dilakukan klasifikasi genus panther yaitu harimau, jaguar, macan tutul, dan singa menggunakan metode Convolutional Neural Network. Model Convolutional Neural Network yang digunakan memiliki 1 input layer, 5 convolution layer, dan 2 fully connected layer. Dataset yang digunakan berupa citra harimau, jaguar, macan tutul, dan singa. Data training terdiri dari 3840 citra, data validasi sebanyak 960 citra, dan data testing sebanyak 800 citra. Hasil akurasi dari pelatihan model untuk training yaitu 92,31% dan validasi yaitu 81,88%, pengujian model menggunakan dataset testing mendapatan hasil 68%. Hasil akurasi prediksi didapatkan dari nilai F1-Score pada pengujian didapatkan sebesar 78% untuk harimau, 70% untuk jaguar, 37% untuk macan tutul, 74% untuk singa. Macan tutul mendapatkan akurasi terendah dibandingkan 3 hewan lainnya tetapi lebih baik dibandingkan hasil penelitian sebelumnya.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2648
Author(s):  
Muhammad Aamir ◽  
Tariq Ali ◽  
Muhammad Irfan ◽  
Ahmad Shaf ◽  
Muhammad Zeeshan Azam ◽  
...  

Natural disasters not only disturb the human ecological system but also destroy the properties and critical infrastructures of human societies and even lead to permanent change in the ecosystem. Disaster can be caused by naturally occurring events such as earthquakes, cyclones, floods, and wildfires. Many deep learning techniques have been applied by various researchers to detect and classify natural disasters to overcome losses in ecosystems, but detection of natural disasters still faces issues due to the complex and imbalanced structures of images. To tackle this problem, we propose a multilayered deep convolutional neural network. The proposed model works in two blocks: Block-I convolutional neural network (B-I CNN), for detection and occurrence of disasters, and Block-II convolutional neural network (B-II CNN), for classification of natural disaster intensity types with different filters and parameters. The model is tested on 4428 natural images and performance is calculated and expressed as different statistical values: sensitivity (SE), 97.54%; specificity (SP), 98.22%; accuracy rate (AR), 99.92%; precision (PRE), 97.79%; and F1-score (F1), 97.97%. The overall accuracy for the whole model is 99.92%, which is competitive and comparable with state-of-the-art algorithms.


Entropy ◽  
2021 ◽  
Vol 23 (1) ◽  
pp. 119
Author(s):  
Tao Wang ◽  
Changhua Lu ◽  
Yining Sun ◽  
Mei Yang ◽  
Chun Liu ◽  
...  

Early detection of arrhythmia and effective treatment can prevent deaths caused by cardiovascular disease (CVD). In clinical practice, the diagnosis is made by checking the electrocardiogram (ECG) beat-by-beat, but this is usually time-consuming and laborious. In the paper, we propose an automatic ECG classification method based on Continuous Wavelet Transform (CWT) and Convolutional Neural Network (CNN). CWT is used to decompose ECG signals to obtain different time-frequency components, and CNN is used to extract features from the 2D-scalogram composed of the above time-frequency components. Considering the surrounding R peak interval (also called RR interval) is also useful for the diagnosis of arrhythmia, four RR interval features are extracted and combined with the CNN features to input into a fully connected layer for ECG classification. By testing in the MIT-BIH arrhythmia database, our method achieves an overall performance of 70.75%, 67.47%, 68.76%, and 98.74% for positive predictive value, sensitivity, F1-score, and accuracy, respectively. Compared with existing methods, the overall F1-score of our method is increased by 4.75~16.85%. Because our method is simple and highly accurate, it can potentially be used as a clinical auxiliary diagnostic tool.


Sign in / Sign up

Export Citation Format

Share Document