scholarly journals Multi-Classifier Decision-Level Fusion Classification of Workpiece Surface Defects Based on a Convolutional Neural Network

Symmetry ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 867
Author(s):  
Fen Liu ◽  
Yuxuan Liu ◽  
Hongqiang Sang

Various defects are formed on the workpiece surface during the production process. Workpiece surface defects are classified according to various characteristics, which includes a bumped surface, scratched surface and pit surface. Suppliers analyze the cause of workpiece surface defects through the defect types and thus determines the subsequent processing. Therefore, the correct classification is essential regarding workpiece surface defects. In this paper, a multi-classifier decision-level fusion classification model for workpiece surface defects based on a convolutional neural network (CNN) was proposed. In the proposed model, the histogram of oriented gradient (HOG) was used to extract the features of the second fully connected layer of the CNN, and the features of the HOG were further extracted by using the local binary patterns (LBP), which was called the HOG–LBP feature extraction. Finally, this paper designed a symmetry ensemble classifier, which was used to classify the features of the last fully connected layer of the CNN and the features of the HOG–LBP. The comprehensive decision was made by fusing the classification results of the symmetry structure channels. The experiments were carried out, and the results showed that the proposed model could improve the accuracy of the workpiece surface defect classification.

Sensors ◽  
2019 ◽  
Vol 19 (17) ◽  
pp. 3680 ◽  
Author(s):  
Haoran Wei ◽  
Roozbeh Jafari ◽  
Nasser Kehtarnavaz

This paper presents the simultaneous utilization of video images and inertial signals that are captured at the same time via a video camera and a wearable inertial sensor within a fusion framework in order to achieve a more robust human action recognition compared to the situations when each sensing modality is used individually. The data captured by these sensors are turned into 3D video images and 2D inertial images that are then fed as inputs into a 3D convolutional neural network and a 2D convolutional neural network, respectively, for recognizing actions. Two types of fusion are considered—Decision-level fusion and feature-level fusion. Experiments are conducted using the publicly available dataset UTD-MHAD in which simultaneous video images and inertial signals are captured for a total of 27 actions. The results obtained indicate that both the decision-level and feature-level fusion approaches generate higher recognition accuracies compared to the approaches when each sensing modality is used individually. The highest accuracy of 95.6% is obtained for the decision-level fusion approach.


2021 ◽  
Vol 16 ◽  
Author(s):  
Di Gai ◽  
Xuanjing Shen ◽  
Haipeng Chen

Background: The effective classification of the melting curve is conducive to measure the specificity of the amplified products and the influence of invalid data on subsequent experiments is excluded. Objective: In this paper, a convolutional neural network (CNN) classification model based on dynamic filter is proposed, which can categorize the number of peaks in the melting curve image and distinguish the pollution data represented by the noise peaks. Method: The main advantage of the proposed model is that it adopts the filter which changes with the input and uses the dynamic filter to capture more information in the image, making the network learning more accurate. In addition, the residual module is used to extract the characteristics of the melting curve, and the pooling operation is replaced with an atrous convolution to prevent the loss of context information. Result: In order to train the proposed model, a novel melting curve dataset is created, which includes a balanced dataset and an unbalanced dataset. The proposed method uses six classification-based assessment criteria to compare with seven representative methods based on deep learning. Experimental results show that proposed method is not only markedly outperforms the other state-of-the-art methods in accuracy, but also has much less running time. Conclusion: It evidently proves that the proposed method is suitable for judging the specificity of amplification products according to the melting curve. Simultaneously, it overcomes the difficulties of manual selection with low efficiency and artificial bias.


Author(s):  
N. Devi

Abstract: This paper focuses on the task of recognizing handwritten Hindi characters using a Convolutional Neural Network (CNN) based. The recognized characters can then be stored digitally in the computer or used for other purposes. The dataset used is obtained from the UC Irvine Machine Learning Repository which contains 92,000 images divided into training (80%) and test set (20%). It contains different forms of handwritten Devanagari characters written by different individuals which can be used to train and test handwritten text recognizers. It contains four CNN layers followed by three fully connected layers for recognition. Grayscale handwritten character images are used as input. Filters are applied on the images to extract different features at each layer. This is done by the Convolution operation. The two other main operations involved are Pooling and Flattening. The output of the CNN layers is fed to the fully connected layers. Finally, the chance or probability score of each character is determined and the character with the highest probability score is shown as the output. A recognition accuracy of 98.94% is obtained. Similar models exist for the purpose, but the proposed model achieved a better performance and accuracy than some of the earlier models. Keywords: Devanagari characters, Convolutional Neural Networks, Image Processing


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1531
Author(s):  
ZhenHua Li ◽  
Yujie Zhang ◽  
Ahmed Abu-Siada ◽  
Xingxin Chen ◽  
Zhenxing Li ◽  
...  

While frequency response analysis (FRA) is a well matured technique widely used by current industry practice to detect the mechanical integrity of power transformers, interpretation of FRA signatures is still challenging, regardless of the research efforts in this area. This paper presents a method for reliable quantitative and qualitative analysis to the transformer FRA signatures based on a decision tree classification model and a fully connected neural network. Several levels of different six fault types are obtained using a lumped parameter-based transformer model. Results show that the proposed model performs well in the training and the validation stages, and is of good generalization ability.


2020 ◽  
Vol 224 (1) ◽  
pp. 191-198
Author(s):  
Xinliang Liu ◽  
Tao Ren ◽  
Hongfeng Chen ◽  
Yufeng Chen

SUMMARY In this paper, convolutional neural networks (CNNs) were used to distinguish between tectonic and non-tectonic seismicity. The proposed CNNs consisted of seven convolutional layers with small kernels and one fully connected layer, which only relied on the acoustic waveform without extracting features manually. For a single station, the accuracy of the model was 0.90, and the event accuracy could reach 0.93. The proposed model was tested using data from January 2019 to August 2019 in China. The event accuracy could reach 0.92, showing that the proposed model could distinguish between tectonic and non-tectonic seismicity.


Sensors ◽  
2020 ◽  
Vol 20 (12) ◽  
pp. 3535 ◽  
Author(s):  
Qian Yan ◽  
Baohua Yang ◽  
Wenyan Wang ◽  
Bing Wang ◽  
Peng Chen ◽  
...  

Scab, frogeye spot, and cedar rust are three common types of apple leaf diseases, and the rapid diagnosis and accurate identification of them play an important role in the development of apple production. In this work, an improved model based on VGG16 is proposed to identify apple leaf diseases, in which the global average poling layer is used to replace the fully connected layer to reduce the parameters and a batch normalization layer is added to improve the convergence speed. A transfer learning strategy is used to avoid a long training time. The experimental results show that the overall accuracy of apple leaf classification based on the proposed model can reach 99.01%. Compared with the classical VGG16, the model parameters are reduced by 89%, the recognition accuracy is improved by 6.3%, and the training time is reduced to 0.56% of that of the original model. Therefore, the deep convolutional neural network model proposed in this work provides a better solution for the identification of apple leaf diseases with higher accuracy and a faster convergence speed.


2019 ◽  
Vol 24 (3) ◽  
pp. 220-228
Author(s):  
Gusti Alfahmi Anwar ◽  
Desti Riminarsih

Panthera merupakan genus dari keluarga kucing yang memiliki empat spesies popular yaitu, harimau, jaguar, macan tutul, singa. Singa memiliki warna keemasan dan tidak memilki motif, harimau memiliki motif loreng dengan garis-garis panjang, jaguar memiliki tubuh yang lebih besar dari pada macan tutul serta memiliki motif tutul yang lebih lebar, sedangkan macan tutul memiliki tubuh yang sedikit lebih ramping dari pada jaguar dan memiliki tutul yang tidak terlalu lebar. Pada penelitian ini dilakukan klasifikasi genus panther yaitu harimau, jaguar, macan tutul, dan singa menggunakan metode Convolutional Neural Network. Model Convolutional Neural Network yang digunakan memiliki 1 input layer, 5 convolution layer, dan 2 fully connected layer. Dataset yang digunakan berupa citra harimau, jaguar, macan tutul, dan singa. Data training terdiri dari 3840 citra, data validasi sebanyak 960 citra, dan data testing sebanyak 800 citra. Hasil akurasi dari pelatihan model untuk training yaitu 92,31% dan validasi yaitu 81,88%, pengujian model menggunakan dataset testing mendapatan hasil 68%. Hasil akurasi prediksi didapatkan dari nilai F1-Score pada pengujian didapatkan sebesar 78% untuk harimau, 70% untuk jaguar, 37% untuk macan tutul, 74% untuk singa. Macan tutul mendapatkan akurasi terendah dibandingkan 3 hewan lainnya tetapi lebih baik dibandingkan hasil penelitian sebelumnya.


Sign in / Sign up

Export Citation Format

Share Document