scholarly journals Classification of Plant Leaf Diseases Based on Improved Convolutional Neural Network

Sensors ◽  
2019 ◽  
Vol 19 (19) ◽  
pp. 4161 ◽  
Author(s):  
Hang ◽  
Zhang ◽  
Chen ◽  
Zhang ◽  
Wang

Plant leaf diseases are closely related to people's daily life. Due to the wide variety of diseases, it is not only time-consuming and labor-intensive to identify and classify diseases by artificial eyes, but also easy to be misidentified with having a high error rate. Therefore, we proposed a deep learning-based method to identify and classify plant leaf diseases. The proposed method can take the advantages of the neural network to extract the characteristics of diseased parts, and thus to classify target disease areas. To address the issues of long training convergence time and too-large model parameters, the traditional convolutional neural network was improved by combining a structure of inception module, a squeeze-and-excitation (SE) module and a global pooling layer to identify diseases. Through the Inception structure, the feature data of the convolutional layer were fused in multi-scales to improve the accuracy on the leaf disease dataset. Finally, the global average pooling layer was used instead of the fully connected layer to reduce the number of model parameters. Compared with some traditional convolutional neural networks, our model yielded better performance and achieved an accuracy of 91.7% on the test data set. At the same time, the number of model parameters and training time have also been greatly reduced. The experimental classification on plant leaf diseases indicated that our method is feasible and effective.

Sensors ◽  
2020 ◽  
Vol 20 (12) ◽  
pp. 3535 ◽  
Author(s):  
Qian Yan ◽  
Baohua Yang ◽  
Wenyan Wang ◽  
Bing Wang ◽  
Peng Chen ◽  
...  

Scab, frogeye spot, and cedar rust are three common types of apple leaf diseases, and the rapid diagnosis and accurate identification of them play an important role in the development of apple production. In this work, an improved model based on VGG16 is proposed to identify apple leaf diseases, in which the global average poling layer is used to replace the fully connected layer to reduce the parameters and a batch normalization layer is added to improve the convergence speed. A transfer learning strategy is used to avoid a long training time. The experimental results show that the overall accuracy of apple leaf classification based on the proposed model can reach 99.01%. Compared with the classical VGG16, the model parameters are reduced by 89%, the recognition accuracy is improved by 6.3%, and the training time is reduced to 0.56% of that of the original model. Therefore, the deep convolutional neural network model proposed in this work provides a better solution for the identification of apple leaf diseases with higher accuracy and a faster convergence speed.


Circulation ◽  
2018 ◽  
Vol 138 (Suppl_2) ◽  
Author(s):  
Tetsuo Hatanaka ◽  
Hiroshi Kaneko ◽  
Aki Nagase ◽  
Seishiro Marukawa

Introduction: An interruption of chest compressions during CPR adversely affects patient outcome. Currently, however, periodical interruptions are unavoidable to assess the ECG rhythms and to give shocks for defibrillation if indicated. Evidence suggests a 5-second interruption immediately before shocks may translate into ~15% reduction of the chance of survival. The objective of this study was to build, train and validate a convolutional neural network (artificial intelligence) for detecting shock-indicated rhythms out of ECG signals corrupted with chest compression artifacts during CPR. Methods: Our convolutional neural network consisted of 7 convolutional layers, 3 pooling layers and 3 fully-connected layers for binary classification (shock-indicated vs non-shock-indicated). The input data set was a spectrogram consisting of 56 frequency-bins by 80 time-segments transformed from a 12.16-seconds ECG signal. From AEDs used for 236 patients with out-of-hospital cardiac arrest, 1,223 annotated ECG strips were extracted. Ventricular fibrillation and wide-QRS ventricular tachycardia with HR>180 beats/min were annotated as shock-indicated, and the others as non-shock-indicated. The total length of the strips was 8:49:57 (hr:min:sec) and 8:02:07 respectively for shock-indicated and non-shock-indicated rhythms. Those strips were converted into 465,102 spectrograms allowing partial overlaps and were fed into the neural network for training. The validation data set was obtained from a separate group of 225 patients, from which annotated ECG strips (total duration of 62:11:28) were extracted, yielding 43,800 spectrograms. Results: After the training, both the sensitivity and specificity of detecting shock-indicated rhythms over the training data set were 99.7% - 100% (varying with training instances). The sensitivity and specificity over the validation data set were 99.3% - 99.7% and 99.3% - 99.5%, respectively. Conclusions: The convolutional neural network has accurately and continuously evaluated the ECG rhythms during CPR, potentially obviating the need for rhythm checks for defibrillation during CPR.


2020 ◽  
Vol 5 (2) ◽  
pp. 192-195
Author(s):  
Umesh B. Chavan ◽  
Dinesh Kulkarni

Facial expression recognition (FER) systems have attracted much research interest in the area of Machine Learning. We designed a large, deep convolutional neural network to classify 40,000 images in the data-set into one of seven categories (disgust, fear, happy, angry, sad, neutral, surprise). In this project, we have designed deep learning Convolution Neural Network (CNN) for facial expression recognition and developed model in Theano and Caffe for training process. The proposed architecture achieves 61% accuracy. This work presents results of accelerated implementation of the CNN with graphic processing units (GPUs). Optimizing Deep CNN is to reduce training time for system.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Zhaojie Wang ◽  
Qingzhe Lv ◽  
Zhaobo Lu ◽  
Yilei Wang ◽  
Shengjie Yue

Incentive mechanism is the key to the success of the Bitcoin system as a permissionless blockchain. It encourages participants to contribute their computing resources to ensure the correctness and consistency of user transaction records. Selfish mining attacks, however, prove that Bitcoin’s incentive mechanism is not incentive-compatible, which is contrary to traditional views. Selfish mining attacks may cause the loss of mining power, especially those of honest participants, which brings great security challenges to the Bitcoin system. Although there are a series of studies against selfish mining behaviors, these works have certain limitations: either the existing protocol needs to be modified or the detection effect for attacks is not satisfactory. We propose the ForkDec, a high-accuracy system for selfish mining detection based on the fully connected neural network, for the purpose of effectively deterring selfish attackers. The neural network contains a total of 100 neurons (10 hidden layers and 10 neurons per layer), learned on a training set containing about 200,000 fork samples. The data set, used to train the model, is generated by a Bitcoin mining simulator that we preconstructed. We also applied ForkDec to the test set to evaluate the attack detection and achieved a detection accuracy of 99.03%. The evaluation experiment demonstrates that ForkDec has certain application value and excellent research prospects.


Author(s):  
Metin DEMIRTAS ◽  
Musa ALCI

The aim of this paper is to compare the neural network and fuzzy modeling approaches on a nonlinear system. We have taken Permanent Magnet Brushless Direct Current (PMBDC) motor data and have generated models using both approaches. The predictive performance of both methods was compared on the data set for model configurations.The paper describes the results of these tests and discusses the effects of changing model parameters on predictive and practical performance. Modeling sensitivity was used to compare for two methods. 


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Haoyan Yang ◽  
Jiangong Ni ◽  
Jiyue Gao ◽  
Zhongzhi Han ◽  
Tao Luan

AbstractCrop variety identification is an essential link in seed detection, phenotype collection and scientific breeding. This paper takes peanut as an example to explore a new method for crop variety identification. Peanut is a crucial oil crop and cash crop. The yield and quality of different peanut varieties are different, so it is necessary to identify and classify different peanut varieties. The traditional image processing method of peanut variety identification needs to extract many features, which has defects such as intense subjectivity and insufficient generalization ability. Based on the deep learning technology, this paper improved the deep convolutional neural network VGG16 and applied the improved VGG16 to the identification and classification task of 12 varieties of peanuts. Firstly, the peanut pod images of 12 varieties obtained by the scanner were preprocessed with gray-scale, binarization, and ROI extraction to form a peanut pod data set with a total of 3365 images of 12 varieties. A series of improvements have been made to VGG16. Remove the F6 and F7 fully connected layers of VGG16. Add Conv6 and Global Average Pooling Layer. The three convolutional layers of conv5 have changed into Depth Concatenation and add the Batch Normalization(BN) layers to the model. Besides, fine-tuning is carried out based on the improved VGG16. We adjusted the location of the BN layers. Adjust the number of filters for Conv6. Finally, the improved VGG16 model's training test results were compared with the other classic models, AlexNet, VGG16, GoogLeNet, ResNet18, ResNet50, SqueezeNet, DenseNet201 and MobileNetv2 verify its superiority. The average accuracy of the improved VGG16 model on the peanut pods test set was 96.7%, which was 8.9% higher than that of VGG16, and 1.6–12.3% higher than that of other classical models. Besides, supplementary experiments were carried out to prove the robustness and generality of the improved VGG16. The improved VGG16 was applied to the identification and classification of seven corn grain varieties with the same method and an average accuracy of 90.1% was achieved. The experimental results show that the improved VGG16 proposed in this paper can identify and classify peanut pods of different varieties, proving the feasibility of a convolutional neural network in variety identification and classification. The model proposed in this experiment has a positive significance for exploring other Crop variety identification and classification.


2020 ◽  
pp. 004051752093957
Author(s):  
Xiaojun Jia ◽  
Zihao Liu

Blue calico is a highly valued folk handicraft that forms part of China’s national intangible cultural heritage. Thus, blue calico is a worthy target for reconstruction using modern image processing technology. Extracting the visual components or elements of a blue calico pattern is one way to capture the underlying design and enable innovation in traditional patterns using modern techniques. This paper presents a method of element extraction and classification based on a smart convolutional neural network (CNN), with an improved CifarNet structure, which we call CalicoNet. Initially, the algorithm for element extraction is implemented to generate element samples of blue calico. This process includes gray scaling, binarization, and contour extraction. We construct a data set of elements with 12 types. Then, four critical hyper-parameters, the batch-size, dropout ratio, learning rate, and pooling strategy, are optimized by a comparative analysis. A combination classifier strategy is subsequently added to the fully connected layers to strengthen the feature expression in the corresponding classes. Finally, the superiority of the proposed CalicoNet is verified through a comparison with other sophisticated CNNs. Experimental results demonstrate that CalicoNet achieves a validation accuracy of 99.2% for the training set, a total time of 1.13 hours for the whole data set, and a test mean accuracy precision of 98.66%. The robust performance of the proposed method across the element data set indicates that CalicoNet is a promising approach for element extraction and classification.


Information ◽  
2019 ◽  
Vol 10 (5) ◽  
pp. 162 ◽  
Author(s):  
Jiana Meng ◽  
Yingchun Long ◽  
Yuhai Yu ◽  
Dandan Zhao ◽  
Shuang Liu

Transfer learning is one of the popular methods for solving the problem that the models built on the source domain cannot be directly applied to the target domain in the cross-domain sentiment classification. This paper proposes a transfer learning method based on the multi-layer convolutional neural network (CNN). Interestingly, we construct a convolutional neural network model to extract features from the source domain and share the weights in the convolutional layer and the pooling layer between the source and target domain samples. Next, we fine-tune the weights in the last layer, named the fully connected layer, and transfer the models from the source domain to the target domain. Comparing with the classical transfer learning methods, the method proposed in this paper does not need to retrain the network for the target domain. The experimental evaluation of the cross-domain data set shows that the proposed method achieves a relatively good performance.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Mingyu Gao ◽  
Peng Song ◽  
Fei Wang ◽  
Junyan Liu ◽  
Andreas Mandelis ◽  
...  

Wood defects are quickly identified from an optical image based on deep learning methodology, which effectively improves wood utilization. Traditional neural network techniques have not yet been employed for wood defect detection due to long training time, low recognition accuracy, and nonautomatical extraction of defect image features. In this work, a model (so-called ReSENet-18) for wood knot defect detection that combined deep learning and transfer learning is proposed. The “squeeze-and-excitation” (SE) module is firstly embedded into the “residual basic block” structure for a “SE-Basic-Block” module construction. This model has the advantages of the features that are extracted in the channel dimension, and it is fused in multiscale with original features. Instantaneously, the fully connected layer is replaced with a global average pooling; consequently, the model parameters could be reduced effectively. The experimental results show that the accuracy has reached 99.02%, meanwhile the training time is also reduced. It shows that the proposed deep convolutional neural network based on ReSENet-18 combined with transfer learning can improve the accuracy of defect recognition and has a potential application in the detection of wood knot defects.


Vestnik MEI ◽  
2021 ◽  
Vol 3 (3) ◽  
pp. 103-109
Author(s):  
Andrey I. Mamontov ◽  

In solving the classification problem, a fully connected trainable neural network (with adjusting the parameters represented by double-precision real numbers) is used as a mathematical model. After the training is completed, the neural network parameters are rounded and represented as fixed-point numbers (integers). The aim of the study is to reduce the required amount of the computing system memory for storing the obtained integer parameters. To reduce the amount of memory, the following methods for storing integer parameters are developed, which are based on representing the linear polynomials included in a fully connected neural network using compositions of simpler functions: - a method based on representing the considered polynomial as a sum of simpler polynomials; - a method based on separately storing the information about additions and multiplications. In the experiment with the MNIST data set, it took 1.41 MB to store real parameters of a fully connected neural network, 0.7 MB to store integer parameters without using the proposed methods, 0.47 MB in the RAM and 0.3 MB in compressed form on the disk when using the first method, and 0.25 MB on the disk when using the second method. In the experiment with the USPS data set, it took 0.25 MB to store real parameters of a fully connected neural network, 0.1 MB to store integer parameters without using the proposed methods, 0.05 MB in the RAM and approximately the same amount in compressed form on the disk when using the first method, and 0.03 MB on the disk when using the second method. The study results can be applied in using fully connected neural networks to solve various recognition problems under the conditions of limited hardware capacities.


Sign in / Sign up

Export Citation Format

Share Document