scholarly journals SlimDeblurGAN-Based Motion Deblurring and Marker Detection for Autonomous Drone Landing

Sensors ◽  
2020 ◽  
Vol 20 (14) ◽  
pp. 3918
Author(s):  
Noi Quang Truong ◽  
Young Won Lee ◽  
Muhammad Owais ◽  
Dat Tien Nguyen ◽  
Ganbayar Batchuluun ◽  
...  

Deep learning-based marker detection for autonomous drone landing is widely studied, due to its superior detection performance. However, no study was reported to address non-uniform motion-blurred input images, and most of the previous handcrafted and deep learning-based methods failed to operate with these challenging inputs. To solve this problem, we propose a deep learning-based marker detection method for autonomous drone landing, by (1) introducing a two-phase framework of deblurring and object detection, by adopting a slimmed version of deblur generative adversarial network (DeblurGAN) model and a You only look once version 2 (YOLOv2) detector, respectively, and (2) considering the balance between the processing time and accuracy of the system. To this end, we propose a channel-pruning framework for slimming the DeblurGAN model called SlimDeblurGAN, without significant accuracy degradation. The experimental results on the two datasets showed that our proposed method exhibited higher performance and greater robustness than the previous methods, in both deburring and marker detection.

Deep learning is a subset of the field of machine learning, which is a subfield of AI. The facts that differentiate deep learning networks in general from “canonical” feedforward multilayer networks are More neurons than previous networks, More complex ways of connecting layers, “Cambrian explosion” of computing power to train and Automatic feature extraction. Deep learning is defined as neural networks with a large number of parameters and layers in fundamental network architectures. Some of the network architectures are Convolutional Neural Networks, Recurrent Neural Networks Recursive Neural Networks, RCNN (Region Based CNN), Fast RCNN, Google Net, YOLO (You Only Look Once), Single Shot detectors, SegNet and GAN (Generative Adversarial Network). Different architectures work well with different types of Datasets. Object Detection is an important computer vision problem with a variety of applications. The tasks involved are classification, Object Localisation and instance segmentation. This paper will discuss how the different architectures are useful to detect the object.


2021 ◽  
Vol 11 (9) ◽  
pp. 3782
Author(s):  
Chu-Hui Lee ◽  
Chen-Wei Lin

Object detection is one of the important technologies in the field of computer vision. In the area of fashion apparel, object detection technology has various applications, such as apparel recognition, apparel detection, fashion recommendation, and online search. The recognition task is difficult for a computer because fashion apparel images have different characteristics of clothing appearance and material. Currently, fast and accurate object detection is the most important goal in this field. In this study, we proposed a two-phase fashion apparel detection method named YOLOv4-TPD (YOLOv4 Two-Phase Detection), based on the YOLOv4 algorithm, to address this challenge. The target categories for model detection were divided into the jacket, top, pants, skirt, and bag. According to the definition of inductive transfer learning, the purpose was to transfer the knowledge from the source domain to the target domain that could improve the effect of tasks in the target domain. Therefore, we used the two-phase training method to implement the transfer learning. Finally, the experimental results showed that the mAP of our model was better than the original YOLOv4 model through the two-phase transfer learning. The proposed model has multiple potential applications, such as an automatic labeling system, style retrieval, and similarity detection.


Information ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 249
Author(s):  
Xin Jin ◽  
Yuanwen Zou ◽  
Zhongbing Huang

The cell cycle is an important process in cellular life. In recent years, some image processing methods have been developed to determine the cell cycle stages of individual cells. However, in most of these methods, cells have to be segmented, and their features need to be extracted. During feature extraction, some important information may be lost, resulting in lower classification accuracy. Thus, we used a deep learning method to retain all cell features. In order to solve the problems surrounding insufficient numbers of original images and the imbalanced distribution of original images, we used the Wasserstein generative adversarial network-gradient penalty (WGAN-GP) for data augmentation. At the same time, a residual network (ResNet) was used for image classification. ResNet is one of the most used deep learning classification networks. The classification accuracy of cell cycle images was achieved more effectively with our method, reaching 83.88%. Compared with an accuracy of 79.40% in previous experiments, our accuracy increased by 4.48%. Another dataset was used to verify the effect of our model and, compared with the accuracy from previous results, our accuracy increased by 12.52%. The results showed that our new cell cycle image classification system based on WGAN-GP and ResNet is useful for the classification of imbalanced images. Moreover, our method could potentially solve the low classification accuracy in biomedical images caused by insufficient numbers of original images and the imbalanced distribution of original images.


IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Chen Xie ◽  
Kecheng Yang ◽  
Anni Wang ◽  
Chunxu Chen ◽  
Wei Li

2021 ◽  
Author(s):  
James Howard ◽  
◽  
Joe Tracey ◽  
Mike Shen ◽  
Shawn Zhang ◽  
...  

Borehole image logs are used to identify the presence and orientation of fractures, both natural and induced, found in reservoir intervals. The contrast in electrical or acoustic properties of the rock matrix and fluid-filled fractures is sufficiently large enough that sub-resolution features can be detected by these image logging tools. The resolution of these image logs is based on the design and operation of the tools, and generally is in the millimeter per pixel range. Hence the quantitative measurement of actual width remains problematic. An artificial intelligence (AI) -based workflow combines the statistical information obtained from a Machine-Learning (ML) segmentation process with a multiple-layer neural network that defines a Deep Learning process that enhances fractures in a borehole image. These new images allow for a more robust analysis of fracture widths, especially those that are sub-resolution. The images from a BHTV log were first segmented into rock and fluid-filled fractures using a ML-segmentation tool that applied multiple image processing filters that captured information to describe patterns in fracture-rock distribution based on nearest-neighbor behavior. The robust ML analysis was trained by users to identify these two components over a short interval in the well, and then the regression model-based coefficients applied to the remaining log. Based on the training, each pixel was assigned a probability value between 1.0 (being a fracture) and 0.0 (pure rock), with most of the pixels assigned one of these two values. Intermediate probabilities represented pixels on the edge of rock-fracture interface or the presence of one or more sub-resolution fractures within the rock. The probability matrix produced a map or image of the distribution of probabilities that determined whether a given pixel in the image was a fracture or partially filled with a fracture. The Deep Learning neural network was based on a Conditional Generative Adversarial Network (cGAN) approach where the probability map was first encoded and combined with a noise vector that acted as a seed for diverse feature generation. This combination was used to generate new images that represented the BHTV response. The second layer of the neural network, the adversarial or discriminator portion, determined whether the generated images were representative of the actual BHTV by comparing the generated images with actual images from the log and producing an output probability of whether it was real or fake. This probability was then used to train the generator and discriminator models that were then applied to the entire log. Several scenarios were run with different probability maps. The enhanced BHTV images brought out fractures observed in the core photos that were less obvious in the original BTHV log through enhanced continuity and improved resolution on fracture widths.


Author(s):  
Siyu Chen ◽  
Li Wang ◽  
Zheng Fang ◽  
Zhensheng Shi ◽  
Anxue Zhang

Sensors ◽  
2018 ◽  
Vol 18 (11) ◽  
pp. 3913 ◽  
Author(s):  
Mingxuan Li ◽  
Ou Li ◽  
Guangyi Liu ◽  
Ce Zhang

With the recently explosive growth of deep learning, automatic modulation recognition has undergone rapid development. Most of the newly proposed methods are dependent on large numbers of labeled samples. We are committed to using fewer labeled samples to perform automatic modulation recognition in the cognitive radio domain. Here, a semi-supervised learning method based on adversarial training is proposed which is called signal classifier generative adversarial network. Most of the prior methods based on this technology involve computer vision applications. However, we improve the existing network structure of a generative adversarial network by adding the encoder network and a signal spatial transform module, allowing our framework to address radio signal processing tasks more efficiently. These two technical improvements effectively avoid nonconvergence and mode collapse problems caused by the complexity of the radio signals. The results of simulations show that compared with well-known deep learning methods, our method improves the classification accuracy on a synthetic radio frequency dataset by 0.1% to 12%. In addition, we verify the advantages of our method in a semi-supervised scenario and obtain a significant increase in accuracy compared with traditional semi-supervised learning methods.


Author(s):  
S. M. Tilon ◽  
F. Nex ◽  
D. Duarte ◽  
N. Kerle ◽  
G. Vosselman

Abstract. Degradation and damage detection provides essential information to maintenance workers in routine monitoring and to first responders in post-disaster scenarios. Despite advance in Earth Observation (EO), image analysis and deep learning techniques, the quality and quantity of training data for deep learning is still limited. As a result, no robust method has been found yet that can transfer and generalize well over a variety of geographic locations and typologies of damages. Since damages can be seen as anomalies, occurring sparingly over time and space, we propose to use an anomaly detecting Generative Adversarial Network (GAN) to detect damages. The main advantages of using GANs are that only healthy unannotated images are needed, and that a variety of damages, including the never before seen damage, can be detected. In this study we aimed to investigate 1) the ability of anomaly detecting GANs to detect degradation (potholes and cracks) in asphalt road infrastructures using Mobile Mapper imagery and building damage (collapsed buildings, rubble piles) using post-disaster aerial imagery, and 2) the sensitivity of this method against various types of pre-processing. Our results show that we can detect damages in urban scenes at satisfying levels but not on asphalt roads. Future work will investigate how to further classify the found damages and how to improve damage detection for asphalt roads.


Sign in / Sign up

Export Citation Format

Share Document