scholarly journals Recognition of Crop Diseases Based on Depthwise Separable Convolution in Edge Computing

Sensors ◽  
2020 ◽  
Vol 20 (15) ◽  
pp. 4091
Author(s):  
Musong Gu ◽  
Kuan-Ching Li ◽  
Zhongwen Li ◽  
Qiyi Han ◽  
Wenjie Fan

The original pattern recognition and classification of crop diseases needs to collect a large amount of data in the field and send them next to a computer server through the network for recognition and classification. This method usually takes a long time, is expensive, and is difficult to carry out for timely monitoring of crop diseases, causing delays to diagnosis and treatment. With the emergence of edge computing, one can attempt to deploy the pattern recognition algorithm to the farmland environment and monitor the growth of crops promptly. However, due to the limited resources of the edge device, the original deep recognition model is challenging to apply. Due to this, in this article, a recognition model based on a depthwise separable convolutional neural network (DSCNN) is proposed, which operation particularities include a significant reduction in the number of parameters and the amount of computation, making the proposed design well suited for the edge. To show its effectiveness, simulation results are compared with the main convolution neural network (CNN) models LeNet and Visual Geometry Group Network (VGGNet) and show that, based on high recognition accuracy, the recognition time of the proposed model is reduced by 80.9% and 94.4%, respectively. Given its fast recognition speed and high recognition accuracy, the model is suitable for the real-time monitoring and recognition of crop diseases by provisioning remote embedded equipment and deploying the proposed model using edge computing.

2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Zhehuang Huang ◽  
Yidong Chen

Exon recognition is a fundamental task in bioinformatics to identify the exons of DNA sequence. Currently, exon recognition algorithms based on digital signal processing techniques have been widely used. Unfortunately, these methods require many calculations, resulting in low recognition efficiency. In order to overcome this limitation, a two-stage exon recognition model is proposed and implemented in this paper. There are three main works. Firstly, we use synergetic neural network to rapidly determine initial exon intervals. Secondly, adaptive sliding window is used to accurately discriminate the final exon intervals. Finally, parameter optimization based on artificial fish swarm algorithm is used to determine different species thresholds and corresponding adjustment parameters of adaptive windows. Experimental results show that the proposed model has better performance for exon recognition and provides a practical solution and a promising future for other recognition tasks.


Recently Plant phenotyping has gained the attention of many researchers such that it plays a vital role in the context of enhancing agricultural productivity. Indian economy highly depends on agriculture and this factor elevates the importance of early disease detection of the crops within the agricultural fields. Addressing this problem several researchers have proposed Computer Vision and Pattern recognition based mechanisms through which they have attempted to identify the infected crops in the early stages.in this scenario, CNN convolution neural network-based architecture has demonstrated exceptional performance when compared with state-of-art mechanisms. This paper introduces an enhanced RCNN recurrent convolution neural network-based architecture that enhances the prediction accuracy while detecting the crop diseases in early stages. Based on the simulative studies is observed that the proposed model outperforms when compared with CNN and other state-of-art mechanisms.


2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Sungho Kim ◽  
Meehyun Lim ◽  
Yeamin Kim ◽  
Hee-Dong Kim ◽  
Sung-Jin Choi

Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Dongsheng Wang ◽  
Jun Feng ◽  
Xinpeng Zhao ◽  
Yeping Bai ◽  
Yujie Wang ◽  
...  

It is difficult to form a method for recognizing the degree of infiltration of a tunnel lining. To solve this problem, we propose a recognition method by using a deep convolutional neural network. We carry out laboratory tests, prepare cement mortar specimens with different saturation levels, simulate different degrees of infiltration of tunnel concrete linings, and establish an infrared thermal image data set with different degrees of infiltration. Then, based on a deep learning method, the data set is trained using the Faster R-CNN+ResNet101 network, and a recognition model is established. The experiments show that the recognition model established by the deep learning method can be used to select cement mortar specimens with different degrees of infiltration by using an accurately minimized rectangular outer frame. This model shows that the classification recognition model for tunnel concrete lining infiltration established by the indoor experimental method has high recognition accuracy.


Sensors ◽  
2020 ◽  
Vol 20 (2) ◽  
pp. 537 ◽  
Author(s):  
Jiyuan Song ◽  
Aibin Zhu ◽  
Yao Tu ◽  
Yingxu Wang ◽  
Muhammad Affan Arif ◽  
...  

Aiming at the requirement of rapid recognition of the wearer’s gait stage in the process of intelligent hybrid control of an exoskeleton, this paper studies the human body mixed motion pattern recognition technology based on multi-source feature parameters. We obtain information on human lower extremity acceleration and plantar analyze the relationship between these parameters and gait cycle studying the motion state recognition method based on feature evaluation and neural network. Based on the actual requirements of exoskeleton per use, 15 common gait patterns were determined. Using this, the studies were carried out on the time domain, frequency domain, and energy feature extraction of multi-source lower extremity motion information. The distance-based feature screening method was used to extract the optimal features. Finally, based on the multi-layer BP (back propagation) neural network, a nonlinear mapping model between feature quantity and motion state was established. The experimental results showed that the recognition accuracy in single motion mode can reach up to 98.28%, while the recognition accuracy of the two groups of experiments in mixed motion mode was found to be 92.7% and 97.4%, respectively. The feasibility and effectiveness of the model were verified.


2018 ◽  
Vol 39 (11) ◽  
pp. 1652-1655 ◽  
Author(s):  
Zheng Chai ◽  
Pedro Freitas ◽  
Weidong Zhang ◽  
Firas Hatem ◽  
Jian Fu Zhang ◽  
...  

2002 ◽  
Author(s):  
Sophie Bouchoux ◽  
Vincent Brost ◽  
Fan Yang ◽  
Jean Claude Grapin ◽  
Michel Paindavoine

2019 ◽  
Vol 3 (1) ◽  
pp. 9-19 ◽  
Author(s):  
Fazal Noor

Ultrasonic sensors have been used in a variety of applications to measure ranges to objects. Hand gestures via ultrasonic sensors form unique motion patterns for controls. In this research, patterns formed by placing a set of objects in a grid of cells are used for control purposes. A neural network algorithm is implemented on a microcontroller which takes in range signals as inputs read from ultrasonic sensors and classifies them in one of four classes. The neural network is then trained to classify patterns based on objects’ locations in real-time. The testing of the neural network for pattern recognition is performed on a testbed consisting of Inter-Integrated Circuit (I2C) ultrasonic sensors and a microcontroller. The performance of the proposed model is presented and it is observed the model is highly scalable, accurate, robust and reliable for applications requiring high accuracy such as in robotics and artificial intelligence.


Sign in / Sign up

Export Citation Format

Share Document