scholarly journals Vibration Characterization of the Human Knee Joint in Audible Frequencies

Sensors ◽  
2020 ◽  
Vol 20 (15) ◽  
pp. 4138
Author(s):  
Mohsen Safaei ◽  
Nicholas B. Bolus ◽  
Alper Erturk ◽  
Omer T. Inan

Injuries and disorders affecting the knee joint are very common in athletes and older individuals. Passive and active vibration methods, such as acoustic emissions and modal analysis, are extensively used in both industry and the medical field to diagnose structural faults and disorders. To maximize the diagnostic potential of such vibration methods for knee injuries and disorders, a better understanding of the vibroacoustic characteristics of the knee must be developed. In this study, the linearity and vibration transmissibility of the human knee were investigated based on measurements collected on healthy subjects. Different subjects exhibit a substantially different transmissibility behavior due to variances in subject-specific knee structures. Moreover, the vibration behaviors of various subjects’ knees at different leg positions were compared. Variation in sagittal-plane knee angle alters the transmissibility of the joint, while the overall shape of the transmissibility diagrams remains similar. The results demonstrate that an adjusted stimulation signal at frequencies higher than 3 kHz has the potential to be employed in diagnostic applications that are related to knee joint health. This work can pave the way for future studies aimed at employing acoustic emission and modal analysis approaches for knee health monitoring outside of clinical settings, such as for field-deployable diagnostics.

Author(s):  
Daniel Alejandro Ponce-Saldias ◽  
◽  
Daniel Martins ◽  
Carlos Rodrigo de Mello-Roesler ◽  
Otavio Teixeira-Pinto ◽  
...  

2018 ◽  
Vol 23 (1) ◽  
pp. 107-120
Author(s):  
V. Musalimov ◽  
Y. Monahov ◽  
M. Tamre ◽  
D. Rõbak ◽  
A. Sivitski ◽  
...  

AbstractThe article discusses motion of a healthy knee joint in the sagittal plane and motion of an injured knee joint supported by an active orthosis. A kinematic scheme of a mechanism for the simulation of a knee joint motion is developed and motion of healthy and injured knee joints are modelled in Matlab. Angles between links, which simulate the femur and tibia are controlled by Simulink block of Model predictive control (MPC). The results of simulation have been compared with several samples of real motion of the human knee joint obtained from motion capture systems. On the basis of these analyses and also of the analysis of the forces in human lower limbs created at motion, an active smart orthosis is developed. The orthosis design was optimized to achieve an energy saving system with sufficient anatomy, necessary reliability, easy exploitation and low cost. With the orthosis it is possible to unload the knee joint, and also partially or fully compensate muscle forces required for the bending of the lower limb.


2018 ◽  
Vol 00 (1) ◽  
pp. 109-118
Author(s):  
Enas Y. Abdullah ◽  
◽  
Naktal Moid Edan ◽  
Athraa N. Kadhim ◽  
◽  
...  

1985 ◽  
Vol 18 (7) ◽  
pp. 541
Author(s):  
Ph. Edixhoven ◽  
R. Huiskes ◽  
Th.J.G. van Rens ◽  
T.J.J.H. Slooff

2014 ◽  
Vol 15 (5) ◽  
pp. 7250-7265 ◽  
Author(s):  
Congming Zhang ◽  
Xiaochun Wei ◽  
Chongwei Chen ◽  
Kun Cao ◽  
Yongping Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document