scholarly journals Intercomparison of In Situ Sensors for Ground-Based Land Surface Temperature Measurements

Sensors ◽  
2020 ◽  
Vol 20 (18) ◽  
pp. 5268
Author(s):  
Praveena Krishnan ◽  
Tilden P. Meyers ◽  
Simon J. Hook ◽  
Mark Heuer ◽  
David Senn ◽  
...  

Land surface temperature (LST) is a key variable in the determination of land surface energy exchange processes from local to global scales. Accurate ground measurements of LST are necessary for a number of applications including validation of satellite LST products or improvement of both climate and numerical weather prediction models. With the objective of assessing the quality of in situ measurements of LST and to evaluate the quantitative uncertainties in the ground-based LST measurements, intensive field experiments were conducted at NOAA’s Air Resources Laboratory (ARL)’s Atmospheric Turbulence and Diffusion Division (ATDD) in Oak Ridge, Tennessee, USA, from October 2015 to January 2016. The results of the comparison of LSTs retrieved by three narrow angle broadband infrared temperature sensors (IRT), hemispherical longwave radiation (LWR) measurements by pyrgeometers, forward looking infrared camera with direct LSTs by multiple thermocouples (TC), and near surface air temperature (AT) are presented here. The brightness temperature (BT) measurements by the IRTs agreed well with a bias of <0.23 °C, and root mean square error (RMSE) of <0.36 °C. The daytime LST(TC) and LST(IRT) showed better agreement (bias = 0.26 °C and RMSE = 0.67 °C) than with LST(LWR) (bias > 1.1 and RMSE > 1.46 °C). In contrast, the difference between nighttime LSTs by IRTs, TCs, and LWR were <0.47 °C, whereas nighttime AT explained >81% of the variance in LST(IRT) with a bias of 2.64 °C and RMSE of 3.6 °C. To evaluate the annual and seasonal differences in LST(IRT), LST(LWR) and AT, the analysis was extended to four grassland sites in the USA. For the annual dataset of LST, the bias between LST (IRT) and LST (LWR) was <0.7 °C, except at the semiarid grassland (1.5 °C), whereas the absolute bias between AT and LST at the four sites were <2 °C. The monthly difference between LST (IRT) and LST (LWR) (or AT) reached up to 2 °C (5 °C), whereas half-hourly differences between LSTs and AT were several degrees in magnitude depending on the site characteristics, time of the day and the season.

2015 ◽  
Vol 12 (8) ◽  
pp. 7665-7687 ◽  
Author(s):  
C. L. Pérez Díaz ◽  
T. Lakhankar ◽  
P. Romanov ◽  
J. Muñoz ◽  
R. Khanbilvardi ◽  
...  

Abstract. Land Surface Temperature (LST) is a key variable (commonly studied to understand the hydrological cycle) that helps drive the energy balance and water exchange between the Earth's surface and its atmosphere. One observable constituent of much importance in the land surface water balance model is snow. Snow cover plays a critical role in the regional to global scale hydrological cycle because rain-on-snow with warm air temperatures accelerates rapid snow-melt, which is responsible for the majority of the spring floods. Accurate information on near-surface air temperature (T-air) and snow skin temperature (T-skin) helps us comprehend the energy and water balances in the Earth's hydrological cycle. T-skin is critical in estimating latent and sensible heat fluxes over snow covered areas because incoming and outgoing radiation fluxes from the snow mass and the air temperature above make it different from the average snowpack temperature. This study investigates the correlation between MODerate resolution Imaging Spectroradiometer (MODIS) LST data and observed T-air and T-skin data from NOAA-CREST-Snow Analysis and Field Experiment (CREST-SAFE) for the winters of 2013 and 2014. LST satellite validation is imperative because high-latitude regions are significantly affected by climate warming and there is a need to aid existing meteorological station networks with the spatially continuous measurements provided by satellites. Results indicate that near-surface air temperature correlates better than snow skin temperature with MODIS LST data. Additional findings show that there is a negative trend demonstrating that the air minus snow skin temperature difference is inversely proportional to cloud cover. To a lesser extent, it will be examined whether the surface properties at the site are representative for the LST properties within the instrument field of view.


2006 ◽  
Vol 19 (12) ◽  
pp. 2995-3003 ◽  
Author(s):  
Yuichiro Oku ◽  
Hirohiko Ishikawa ◽  
Shigenori Haginoya ◽  
Yaoming Ma

Abstract The diurnal, seasonal, and interannual variations in land surface temperature (LST) on the Tibetan Plateau from 1996 to 2002 are analyzed using the hourly LST dataset obtained by Japanese Geostationary Meteorological Satellite 5 (GMS-5) observations. Comparing LST retrieved from GMS-5 with independent precipitation amount data demonstrates the consistent and complementary relationship between them. The results indicate an increase in the LST over this period. The daily minimum has risen faster than the daily maximum, resulting in a narrowing of the diurnal range of LST. This is in agreement with the observed trends in both global and plateau near-surface air temperature. Since the near-surface air temperature is mainly controlled by LST, this result ensures a warming trend in near-surface air temperature.


2020 ◽  
Author(s):  
Zheng Guo ◽  
Miaomiao Cheng

&lt;p&gt;Diurnal temperature range (includes land surface temperature diurnal range and near surface air temperature diurnal range) is an important meteorological parameter, which is a very important factor in the field of the urban thermal environmental. Nowadays, the research of urban thermal environment mainly focused on surface heat island and canopy heat island.&lt;/p&gt;&lt;p&gt;Based on analysis of the current status of city thermal environment. Firstly, a method was proposed to obtain near surface air temperature diurnal range in this study, difference of land surface temperature between day and night were introduced into the improved temperature vegetation index feature space based on remote sensing data. Secondly, compared with the district administrative division, we analyzed the spatial and temporal distribution characteristics of the diurnal range of land surface temperature and near surface air temperature.&lt;/p&gt;&lt;p&gt;The conclusions of this study are as follows:&lt;/p&gt;&lt;p&gt;1 During 2003-2012s, the land surface temperature and near surface air temperature diurnal range of Beijing were fluctuating upward. The rising trend of the near surface air temperature diurnal range was more significant than land surface temperature diurnal range. In addition, the rise and decline of land surface temperature and near surface air temperature diurnal range in different districts were different. In the six city districts, the land surface temperature and near surface air temperature diurnal range in the six areas of the city were mainly downward. The decline trend of near surface air temperature diurnal range was more significant than land surface temperature diurnal range.&lt;/p&gt;&lt;p&gt;2 During 2003-2012s, the land surface temperature and near surface air temperature diurnal range of Beijing with similar characteristics in spatial distribution, with higher distribution land surface temperature and near surface air temperature diurnal range in urban area and with lower distribution of land surface temperature and near surface air temperature diurnal range in the Northwest Mountainous area and the area of Miyun reservoir.&lt;/p&gt;


2019 ◽  
Vol 11 (22) ◽  
pp. 2639 ◽  
Author(s):  
Li Fang ◽  
Xiwu Zhan ◽  
Mitchell Schull ◽  
Satya Kalluri ◽  
Istvan Laszlo ◽  
...  

Evapotranspiration (ET) is a major component of the global and regional water cycle. An operational Geostationary Operational Environmental Satellite (GOES) ET and Drought (GET-D) product system has been developed by the National Environmental Satellite, Data and Information Service (NESDIS) in the National Oceanic and Atmospheric Administration (NOAA) for numerical weather prediction model validation, data assimilation, and drought monitoring. GET-D system was generating ET and Evaporative Stress Index (ESI) maps at 8 km spatial resolution using thermal observations of the Imagers on GOES-13 and GOES-15 before the primary operational GOES satellites transitioned to GOES-16 and GOES-17 with the Advanced Baseline Imagers (ABI). In this study, the GET-D product system is upgraded to ingest the thermal observations of ABI with the best spatial resolution of 2 km. The core of the GET-D system is the Atmosphere-Land Exchange Inversion (ALEXI) model, which exploits the mid-morning rise in the land surface temperature to deduce the land surface fluxes including ET. Satellite-based land surface temperature and solar insolation retrievals from ABI and meteorological forcing from NOAA NCEP Climate Forecast System (CFS) are the major inputs to the GET-D system. Ancillary data required in GET-D include land cover map, leaf area index, albedo and cloud mask. This paper presents preliminary results of ET from the upgraded GET-D system after a brief introduction of the ALEXI model and the architecture of GET-D system. Comparisons with in situ ET measurements showed that the accuracy of the GOES-16 ABI based ET is similar to the results from the legacy GET-D ET based on GOES-13/15 Imager data. The agreement with the in situ measurements is satisfactory with a correlation of 0.914 averaged from three Mead sites. Further evaluation of the ABI-based ET product, upgrade efforts of the GET-D system for ESI products, and conclusions for the ABI-based GET-D products are discussed.


2020 ◽  
Vol 12 (8) ◽  
pp. 1271 ◽  
Author(s):  
Tao Sun ◽  
Ranhao Sun ◽  
Liding Chen

The credible urban heat island (UHI) trend is crucial for assessing the effects of urbanization on climate. Land surface temperature (LST) and near surface air temperature (SAT) have been extensively used to obtain UHI intensities. However, the consistency of UHI trend between LST and SAT has rarely been discussed. This paper quantified the temporal stability and trend consistency between Moderate Resolution Imaging Spectroradiometer (MODIS) LST and in situ SAT. Linear regressions, temporal trends and coefficients of variations (CV) were analyzed based on the yearly mean, maximum and minimum temperatures. The findings in this study were: (1) Good statistical consistency (R2 = 0.794) and the same trends were found only in mean temperature between LST-UHI and SAT-UHI. There are 54% of cities that showed opposite temporal trends between LST-UHI and SAT-UHI for minimum temperature while the percentage was 38% for maximum temperature. (2) The high discrepancies in temporal trends were observed for all cities, which indicated the inadequacy of LST for obtaining reliable UHI trends especially when using the maximum and minimum temperatures. (3) The larger uncertainties of LST-UHI were probably due to high inter-annual fluctuations of LST. The topography was the predominant factor that affected the UHI variations for both LST and SAT. Therefore, we suggested that SAT should be combined with LST to ensure the dependable temporal series of UHI. This paper provided references for understanding the UHI effects on various surfaces.


2021 ◽  
Author(s):  
Gitanjali Thakur ◽  
Stan Schymanski ◽  
Kaniska Mallick ◽  
Ivonne Trebs

&lt;p&gt;The surface energy balance (SEB) is defined as the balance between incoming energy from the sun and outgoing energy from the Earth&amp;#8217;s surface. All components of the SEB depend on land surface temperature (LST). Therefore, LST is an important state variable that controls the energy and water exchange between the Earth&amp;#8217;s surface and the atmosphere. LST can be estimated radiometrically, based on the infrared radiance emanating from the surface. At the landscape scale, LST is derived from thermal radiation measured using&amp;#160; satellites.&amp;#160; At the plot scale, eddy covariance flux towers commonly record downwelling and upwelling longwave radiation, which can be inverted to retrieve LST&amp;#160; using the grey body equation :&lt;br&gt;&amp;#160;&amp;#160;&amp;#160;&amp;#160;&amp;#160;&amp;#160;&amp;#160;&amp;#160;&amp;#160;&amp;#160;&amp;#160;&amp;#160; R&lt;sub&gt;lup&lt;/sub&gt; = &amp;#949;&amp;#963; T&lt;sub&gt;s&lt;/sub&gt;&lt;sup&gt;4&lt;/sup&gt; + (1 &amp;#8722; &amp;#949;) R&lt;sub&gt; ldw&amp;#160;&amp;#160;&amp;#160;&amp;#160;&amp;#160;&amp;#160;&amp;#160;&amp;#160; &lt;/sub&gt;(1)&lt;br&gt;where R&lt;sub&gt;lup&lt;/sub&gt; is the upwelling longwave radiation, R&lt;sub&gt;ldw&lt;/sub&gt; is the downwelling longwave radiation, &amp;#949; is the surface emissivity, &lt;em&gt;T&lt;sub&gt;s&lt;/sub&gt;&amp;#160; &lt;/em&gt;is the surface temperature and &amp;#963;&amp;#160; is the Stefan-Boltzmann constant. The first term is the temperature-dependent part, while the second represents reflected longwave radiation. Since in the past downwelling longwave radiation was not measured routinely using flux towers, it is an established practice to only use upwelling longwave radiation for the retrieval of plot-scale LST, essentially neglecting the reflected part and shortening Eq. 1 to:&lt;br&gt;&amp;#160;&amp;#160;&amp;#160;&amp;#160;&amp;#160;&amp;#160;&amp;#160;&amp;#160;&amp;#160;&amp;#160;&amp;#160;&amp;#160;&amp;#160;&amp;#160; R&lt;sub&gt;lup&lt;/sub&gt; = &amp;#949;&amp;#963; T&lt;sub&gt;s&lt;/sub&gt;&lt;sup&gt;4 &lt;/sup&gt;&amp;#160; &amp;#160; &amp;#160; &amp;#160; &amp;#160; &amp;#160; &amp;#160; &amp;#160; &amp;#160; &amp;#160; &amp;#160;&amp;#160; (2)&lt;br&gt;Despite&amp;#160; widespread availability of downwelling longwave radiation measurements, it is still common to use the short equation (Eq. 2) for in-situ LST retrieval. This prompts the question if ignoring the downwelling longwave radiation introduces a bias in LST estimations from tower measurements. Another associated question is how to obtain the correct &amp;#949; needed for in-situ LST retrievals using tower-based measurements.&lt;br&gt;The current work addresses these two important science questions using observed fluxes at eddy covariance towers for different land cover types. Additionally, uncertainty in retrieved LST and emissivity due to uncertainty in input fluxes was quantified using SOBOL-based uncertainty analysis (SALib). Using landscape-scale emissivity obtained from satellite data (MODIS), we found that the LST&amp;#160; obtained using the complete equation (Eq. 1) is 0.5 to 1.5 K lower than the short equation (Eq. 2). Also, plot-scale emissivity was estimated using observed sensible heat flux and surface-air temperature differences. Plot-scale emissivity obtained using the complete equation was generally between 0.8 to 0.98 while the short equation gave values between 0.9 to 0.98, for all land cover types. Despite additional input data for the complete equation, the uncertainty in plot-scale LST was not greater than if the short equation was used. Landscape-scale daytime LST obtained from satellite data (MODIS TERRA) were strongly correlated with our plot-scale estimates, but on average higher by 0.5 to 9 K, regardless of the equation used. However, for most sites, the correspondence between MODIS TERRA LST and retrieved plot-scale LST estimates increased significantly if plot-scale emissivity was used instead of the landscape-scale emissivity obtained from satellite data.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document