scholarly journals Advancements in Microfabricated Gas Sensors and Microanalytical Tools for the Sensitive and Selective Detection of Odors

Sensors ◽  
2020 ◽  
Vol 20 (19) ◽  
pp. 5478
Author(s):  
Enric Perarnau Ollé ◽  
Josep Farré-Lladós ◽  
Jasmina Casals-Terré

In recent years, advancements in micromachining techniques and nanomaterials have enabled the fabrication of highly sensitive devices for the detection of odorous species. Recent efforts done in the miniaturization of gas sensors have contributed to obtain increasingly compact and portable devices. Besides, the implementation of new nanomaterials in the active layer of these devices is helping to optimize their performance and increase their sensitivity close to humans’ olfactory system. Nonetheless, a common concern of general-purpose gas sensors is their lack of selectivity towards multiple analytes. In recent years, advancements in microfabrication techniques and microfluidics have contributed to create new microanalytical tools, which represent a very good alternative to conventional analytical devices and sensor-array systems for the selective detection of odors. Hence, this paper presents a general overview of the recent advancements in microfabricated gas sensors and microanalytical devices for the sensitive and selective detection of volatile organic compounds (VOCs). The working principle of these devices, design requirements, implementation techniques, and the key parameters to optimize their performance are evaluated in this paper. The authors of this work intend to show the potential of combining both solutions in the creation of highly compact, low-cost, and easy-to-deploy platforms for odor monitoring.

RSC Advances ◽  
2019 ◽  
Vol 9 (58) ◽  
pp. 33976-33980 ◽  
Author(s):  
Yun-Tae Kim ◽  
Seongwoo Lee ◽  
Sanghwan Park ◽  
Chang Young Lee

Graphene gas sensors functionalized with substituted triphenylene selectively detect DMMP, a simulant of nerve agent, at low ppm level.


RSC Advances ◽  
2019 ◽  
Vol 9 (46) ◽  
pp. 26773-26779 ◽  
Author(s):  
Naraporn Indarit ◽  
Yong-Hoon Kim ◽  
Nattasamon Petchsang ◽  
Rawat Jaisutti

Low-cost effective real-time ammonia detector by a simple dip-coating a single polyester yarn with functional polyaniline.


Author(s):  
G. Guidi ◽  
S. Gonizzi ◽  
L. Micoli

Since the advent of the first Kinect as motion controller device for the Microsoft XBOX platform (November 2010), several similar active and low-cost range sensing devices have been introduced on the mass-market for several purposes, including gesture based interfaces, 3D multimedia interaction, robot navigation, finger tracking, 3D body scanning for garment design and proximity sensors for automotive. However, given their capability to generate a real time stream of range images, these has been used in some projects also as general purpose range devices, with performances that for some applications might be satisfying. This paper shows the working principle of the various devices, analyzing them in terms of systematic errors and random errors for exploring the applicability of them in standard 3D capturing problems. Five actual devices have been tested featuring three different technologies: i) Kinect V1 by Microsoft, Structure Sensor by Occipital, and Xtion PRO by ASUS, all based on different implementations of the Primesense sensor; ii) F200 by Intel/Creative, implementing the Realsense pattern projection technology; Kinect V2 by Microsoft, equipped with the Canesta TOF Camera. A critical analysis of the results tries first of all to compare them, and secondarily to focus the range of applications for which such devices could actually work as a viable solution.


Author(s):  
G. Guidi ◽  
S. Gonizzi ◽  
L. Micoli

Since the advent of the first Kinect as motion controller device for the Microsoft XBOX platform (November 2010), several similar active and low-cost range sensing devices have been introduced on the mass-market for several purposes, including gesture based interfaces, 3D multimedia interaction, robot navigation, finger tracking, 3D body scanning for garment design and proximity sensors for automotive. However, given their capability to generate a real time stream of range images, these has been used in some projects also as general purpose range devices, with performances that for some applications might be satisfying. This paper shows the working principle of the various devices, analyzing them in terms of systematic errors and random errors for exploring the applicability of them in standard 3D capturing problems. Five actual devices have been tested featuring three different technologies: i) Kinect V1 by Microsoft, Structure Sensor by Occipital, and Xtion PRO by ASUS, all based on different implementations of the Primesense sensor; ii) F200 by Intel/Creative, implementing the Realsense pattern projection technology; Kinect V2 by Microsoft, equipped with the Canesta TOF Camera. A critical analysis of the results tries first of all to compare them, and secondarily to focus the range of applications for which such devices could actually work as a viable solution.


Author(s):  
Sajad Pirsa

Chemiresistive gas sensor based on conducting polymer is a type of sensors that presents gas sensors with excellent characters; low-cost fabrication, fast detection, simultaneous determination (array gas sensor), portable devices and so. Theses gas sensors are commonly based on polyaniline (PANI), polypyrrole (PPy), polythiophene (PTh) and their derivatives as a transducer. Common configuration and response mechanism of these sensors are reported in this section. Some factors that induce selectivity to these sensors are discussed. Different materials (conductor or insulant) can be used as a substrate of polymerization. Type of substrate, selective membranes, surface modification of conducting polymer and so can change response behavior of these sensors.


Author(s):  
Sajad Pirsa

Chemiresistive gas sensor based on conducting polymer is a type of sensors that presents gas sensors with excellent characters; low-cost fabrication, fast detection, simultaneous determination (array gas sensor), portable devices and so. Theses gas sensors are commonly based on polyaniline (PANI), polypyrrole (PPy), polythiophene (PTh) and their derivatives as a transducer. Common configuration and response mechanism of these sensors are reported in this section. Some factors that induce selectivity to these sensors are discussed. Different materials (conductor or insulant) can be used as a substrate of polymerization. Type of substrate, selective membranes, surface modification of conducting polymer and so can change response behavior of these sensors.


Alloy Digest ◽  
1983 ◽  
Vol 32 (5) ◽  

Abstract AISI 1030 is a plain carbon steel containing nominally 0.30% carbon. It is used in the hot-rolled, normalized, oil-quenched-and-tempered or water-quenched-and-tempered conditions for general-purpose engineering and construction. It provides medium strength and toughness at low cost. Among its many uses are axles, bolts, gears and building sections. All data are on a single heat of fine-grain steel. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness. It also includes information on corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: CS-94. Producer or source: Carbon and alloy steel mills.


Alloy Digest ◽  
1971 ◽  
Vol 20 (6) ◽  

Abstract AISI 1040 is a medium-carbon steel used in the hot-rolled, normalized, oil quenched and tempered or water quenched and tempered condition for general purpose engineering and construction. It provides medium strength and toughness at low cost. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness and fatigue. It also includes information on corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: CS-41. Producer or source: Carbon and alloy steel mills.


Alloy Digest ◽  
1979 ◽  
Vol 28 (4) ◽  

Abstract SAE 1037 is a carbon steel that provides medium strength and medium toughness at low cost. It is used in the hot-rolled, normalized, oil-quenched-and-tempered and water-quenched-and-tempered conditions. This medium-carbon steel is used for construction and for general-purpose engineering. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness. It also includes information on corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: CS-76. Producer or source: Carbon steel mills.


Sign in / Sign up

Export Citation Format

Share Document