scholarly journals Fusing Visual Attention CNN and Bag of Visual Words for Cross-Corpus Speech Emotion Recognition

Sensors ◽  
2020 ◽  
Vol 20 (19) ◽  
pp. 5559
Author(s):  
Minji Seo ◽  
Myungho Kim

Speech emotion recognition (SER) classifies emotions using low-level features or a spectrogram of an utterance. When SER methods are trained and tested using different datasets, they have shown performance reduction. Cross-corpus SER research identifies speech emotion using different corpora and languages. Recent cross-corpus SER research has been conducted to improve generalization. To improve the cross-corpus SER performance, we pretrained the log-mel spectrograms of the source dataset using our designed visual attention convolutional neural network (VACNN), which has a 2D CNN base model with channel- and spatial-wise visual attention modules. To train the target dataset, we extracted the feature vector using a bag of visual words (BOVW) to assist the fine-tuned model. Because visual words represent local features in the image, the BOVW helps VACNN to learn global and local features in the log-mel spectrogram by constructing a frequency histogram of visual words. The proposed method shows an overall accuracy of 83.33%, 86.92%, and 75.00% in the Ryerson Audio-Visual Database of Emotional Speech and Song (RAVDESS), the Berlin Database of Emotional Speech (EmoDB), and Surrey Audio-Visual Expressed Emotion (SAVEE), respectively. Experimental results on RAVDESS, EmoDB, SAVEE demonstrate improvements of 7.73%, 15.12%, and 2.34% compared to existing state-of-the-art cross-corpus SER approaches.

Sensors ◽  
2020 ◽  
Vol 20 (21) ◽  
pp. 6008 ◽  
Author(s):  
Misbah Farooq ◽  
Fawad Hussain ◽  
Naveed Khan Baloch ◽  
Fawad Riasat Raja ◽  
Heejung Yu ◽  
...  

Speech emotion recognition (SER) plays a significant role in human–machine interaction. Emotion recognition from speech and its precise classification is a challenging task because a machine is unable to understand its context. For an accurate emotion classification, emotionally relevant features must be extracted from the speech data. Traditionally, handcrafted features were used for emotional classification from speech signals; however, they are not efficient enough to accurately depict the emotional states of the speaker. In this study, the benefits of a deep convolutional neural network (DCNN) for SER are explored. For this purpose, a pretrained network is used to extract features from state-of-the-art speech emotional datasets. Subsequently, a correlation-based feature selection technique is applied to the extracted features to select the most appropriate and discriminative features for SER. For the classification of emotions, we utilize support vector machines, random forests, the k-nearest neighbors algorithm, and neural network classifiers. Experiments are performed for speaker-dependent and speaker-independent SER using four publicly available datasets: the Berlin Dataset of Emotional Speech (Emo-DB), Surrey Audio Visual Expressed Emotion (SAVEE), Interactive Emotional Dyadic Motion Capture (IEMOCAP), and the Ryerson Audio Visual Dataset of Emotional Speech and Song (RAVDESS). Our proposed method achieves an accuracy of 95.10% for Emo-DB, 82.10% for SAVEE, 83.80% for IEMOCAP, and 81.30% for RAVDESS, for speaker-dependent SER experiments. Moreover, our method yields the best results for speaker-independent SER with existing handcrafted features-based SER approaches.


Author(s):  
Sourabh Suke ◽  
Ganesh Regulwar ◽  
Nikesh Aote ◽  
Pratik Chaudhari ◽  
Rajat Ghatode ◽  
...  

This project describes "VoiEmo- A Speech Emotion Recognizer", a system for recognizing the emotional state of an individual from his/her speech. For example, one's speech becomes loud and fast, with a higher and wider range in pitch, when in a state of fear, anger, or joy whereas human voice is generally slow and low pitched in sadness and tiredness. We have particularly developed a classification model speech emotion detection based on Convolutional neural networks (CNNs), Support Vector Machine (SVM), Multilayer Perceptron (MLP) Classification which make predictions considering the acoustic features of speech signal such as Mel Frequency Cepstral Coefficient (MFCC). Our models have been trained to recognize seven common emotions (neutral, calm, happy, sad, angry, fearful, disgust, surprise). For training and testing the model, we have used relevant data from the Ryerson Audio-Visual Database of Emotional Speech and Song (RAVDESS) dataset and the Toronto Emotional Speech Set (TESS) Dataset. The system is advantageous as it can provide a general idea about the emotional state of the individual based on the acoustic features of the speech irrespective of the language the speaker speaks in, moreover, it also saves time and effort. Speech emotion recognition systems have their applications in various fields like in call centers and BPOs, criminal investigation, psychiatric therapy, the automobile industry, etc.


Author(s):  
Hasrul Mohd Nazid ◽  
Hariharan Muthusamy ◽  
Vikneswaran Vijean ◽  
Sazali Yaacob

In the recent years, researchers are focusing to improve the accuracy of speech emotion recognition. Generally, high emotion recognition accuracies were obtained for two-class emotion recognition, but multi-class emotion recognition is still a challenging task . The main aim of this work is to propose a two-stage feature reduction using Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA) for improving the accuracy of the speech emotion recognition (ER) system. Short-term speech features were extracted from the emotional speech signals. Experiments were carried out using four different supervised classifi ers with two different emotional speech databases. From the experimental results, it can be inferred that the proposed method provides better accuracies of 87.48% for speaker dependent (SD) and gender dependent (GD) ER experiment, 85.15% for speaker independent (SI) ER experiment, and 87.09% for gender independent (GI) experiment.  


Emotion recognition is a rapidly growing research field. Emotions can be effectively expressed through speech and can provide insight about speaker’s intentions. Although, humans can easily interpret emotions through speech, physical gestures, and eye movement but to train a machine to do the same with similar preciseness is quite a challenging task. SER systems can improve human-machine interaction when used with automatic speech recognition, as emotions have the tendency to change the semantics of a sentence. Many researchers have contributed their extremely impressive work in this research area, leading to development of numerous classification, feature selection, feature extraction and emotional speech databases. This paper reviews recent accomplishments in the area of speech emotion recognition. It also present a detailed review of various types of emotional speech databases, and different classification techniques which can be used individually or in combination and a brief description of various speech features for emotion recognition.


Technologies ◽  
2019 ◽  
Vol 7 (1) ◽  
pp. 20 ◽  
Author(s):  
Evaggelos Spyrou ◽  
Rozalia Nikopoulou ◽  
Ioannis Vernikos ◽  
Phivos Mylonas

It is noteworthy nowadays that monitoring and understanding a human’s emotional state plays a key role in the current and forthcoming computational technologies. On the other hand, this monitoring and analysis should be as unobtrusive as possible, since in our era the digital world has been smoothly adopted in everyday life activities. In this framework and within the domain of assessing humans’ affective state during their educational training, the most popular way to go is to use sensory equipment that would allow their observing without involving any kind of direct contact. Thus, in this work, we focus on human emotion recognition from audio stimuli (i.e., human speech) using a novel approach based on a computer vision inspired methodology, namely the bag-of-visual words method, applied on several audio segment spectrograms. The latter are considered to be the visual representation of the considered audio segment and may be analyzed by exploiting well-known traditional computer vision techniques, such as construction of a visual vocabulary, extraction of speeded-up robust features (SURF) features, quantization into a set of visual words, and image histogram construction. As a last step, support vector machines (SVM) classifiers are trained based on the aforementioned information. Finally, to further generalize the herein proposed approach, we utilize publicly available datasets from several human languages to perform cross-language experiments, both in terms of actor-created and real-life ones.


Author(s):  
Vishal P. Tank ◽  
S. K. Hadia

In the last couple of years emotion recognition has proven its significance in the area of artificial intelligence and man machine communication. Emotion recognition can be done using speech and image (facial expression), this paper deals with SER (speech emotion recognition) only. For emotion recognition emotional speech database is essential. In this paper we have proposed emotional database which is developed in Gujarati language, one of the official’s language of India. The proposed speech corpus bifurcate six emotional states as: sadness, surprise, anger, disgust, fear, happiness. To observe effect of different emotions, analysis of proposed Gujarati speech database is carried out using efficient speech parameters like pitch, energy and MFCC using MATLAB Software.


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 111617-111624 ◽  
Author(s):  
Dai Yu ◽  
Liu Xingyu ◽  
Dong Shuzhan ◽  
Yang Lei

Entropy ◽  
2019 ◽  
Vol 21 (5) ◽  
pp. 479 ◽  
Author(s):  
Noushin Hajarolasvadi ◽  
Hasan Demirel

Detecting human intentions and emotions helps improve human–robot interactions. Emotion recognition has been a challenging research direction in the past decade. This paper proposes an emotion recognition system based on analysis of speech signals. Firstly, we split each speech signal into overlapping frames of the same length. Next, we extract an 88-dimensional vector of audio features including Mel Frequency Cepstral Coefficients (MFCC), pitch, and intensity for each of the respective frames. In parallel, the spectrogram of each frame is generated. In the final preprocessing step, by applying k-means clustering on the extracted features of all frames of each audio signal, we select k most discriminant frames, namely keyframes, to summarize the speech signal. Then, the sequence of the corresponding spectrograms of keyframes is encapsulated in a 3D tensor. These tensors are used to train and test a 3D Convolutional Neural network using a 10-fold cross-validation approach. The proposed 3D CNN has two convolutional layers and one fully connected layer. Experiments are conducted on the Surrey Audio-Visual Expressed Emotion (SAVEE), Ryerson Multimedia Laboratory (RML), and eNTERFACE’05 databases. The results are superior to the state-of-the-art methods reported in the literature.


Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4399
Author(s):  
Youngja Nam ◽  
Chankyu Lee

Convolutional neural networks (CNNs) are a state-of-the-art technique for speech emotion recognition. However, CNNs have mostly been applied to noise-free emotional speech data, and limited evidence is available for their applicability in emotional speech denoising. In this study, a cascaded denoising CNN (DnCNN)–CNN architecture is proposed to classify emotions from Korean and German speech in noisy conditions. The proposed architecture consists of two stages. In the first stage, the DnCNN exploits the concept of residual learning to perform denoising; in the second stage, the CNN performs the classification. The classification results for real datasets show that the DnCNN–CNN outperforms the baseline CNN in overall accuracy for both languages. For Korean speech, the DnCNN–CNN achieves an accuracy of 95.8%, whereas the accuracy of the CNN is marginally lower (93.6%). For German speech, the DnCNN–CNN has an overall accuracy of 59.3–76.6%, whereas the CNN has an overall accuracy of 39.4–58.1%. These results demonstrate the feasibility of applying the DnCNN with residual learning to speech denoising and the effectiveness of the CNN-based approach in speech emotion recognition. Our findings provide new insights into speech emotion recognition in adverse conditions and have implications for language-universal speech emotion recognition.


Sign in / Sign up

Export Citation Format

Share Document