scholarly journals Microscopic Structure from Motion (SfM) for Microscale 3D Surface Reconstruction

Sensors ◽  
2020 ◽  
Vol 20 (19) ◽  
pp. 5599
Author(s):  
Dugan Um ◽  
Sangsoo Lee

In microscale photogrammetry, the confocal microscopic imaging technique has been the dominant trend. Unlike the confocal imaging mostly for transparent objects, we propose a novel method to construct a 3D shape in microscale for various micro-sized solid objects in a broad spectrµm of applications. Recently, the structure from motion (SfM) demonstrated reliable 3D reconstruction capability for macroscale objects. In this paper, we discuss the results of a novel micro-surface reconstruction method using the Structure from Motion in microscale. The proposed micro SfM technique utilizes the photometric stereovision via microscopic photogrammetry. The main challenges lie in the scanning methodology, ambient light control, and light conditioning for microscale object photography. Experimental results of the microscale SfM, as well as the modeling accuracy analysis of a reconstructed micro-object, are shared in the paper.

2014 ◽  
Vol 2014 ◽  
pp. 1-20 ◽  
Author(s):  
Michal Jancosek ◽  
Tomas Pajdla

We present a novel method for 3D surface reconstruction from an input cloud of 3D points augmented with visibility information. We observe that it is possible to reconstruct surfaces that do not contain input points. Instead of modeling the surface from input points, we model free space from visibility information of the input points. The complement of the modeled free space is considered full space. The surface occurs at interface between the free and the full space. We show that under certain conditions a part of the full space surrounded by the free space must contain a real object also when the real object does not contain any input points; that is, an occluder reveals itself through occlusion. Our key contribution is the proposal of a new interface classifier that can also detect the occluder interface just from the visibility of input points. We use the interface classifier to modify the state-of-the-art surface reconstruction method so that it gains the ability to reconstruct weakly supported surfaces. We evaluate proposed method on datasets augmented with different levels of noise, undersampling, and amount of outliers. We show that the proposed method outperforms other methods in accuracy and ability to reconstruct weakly supported surfaces.


2014 ◽  
Vol 971-973 ◽  
pp. 402-405
Author(s):  
Zhou Wen ◽  
Jun Ling Zhang ◽  
Xiu Duan Gong

Globular indexing CAM mechanism is a good indexing mechanism. As the working curve of CAM contour surface is no extending curved surface, there is certain difficulty to design processing. It is new kinds of design method that reverse engineering apply in rapid modeling of curved CAM. In this way, designer can complete curve of CAM reverse modeling, and the rationality of the model is verified. At the same time, it also can reverse modeling and the subsequent development of other products to provide a reference.


2003 ◽  
Vol 3 (1) ◽  
pp. 76-86 ◽  
Author(s):  
Chuan-Chu Kuo ◽  
Hong-Tzong Yau

In the framework of Virtual CMM [1], virtual parts are proposed to be constructed as triangulated surface models. This paper presents a novel surface reconstruction method to the creation of virtual parts. It is based on the idea of identification and sculpting of concave regions of a Delaunay triangulation of the sample data. The proposed algorithm is capable of handling the reconstruction of surfaces with or without boundaries from unorganized points. Comparisons with other Delaunay-based algorithms show that it is more efficient in that it can optimally adapt to the geometric complexity of the sampled object. To validate the proposed algorithm, some detailed illustrations are given.


2011 ◽  
Vol 37 (2) ◽  
pp. 56-62
Author(s):  
Jūratė Sužiedelytė-Visockienė ◽  
Aušra Kumetaitienė ◽  
Renata Bagdžiūnaitė

The article explains the possibilities of reconstructing heritage objects. Measurements were made using photogrammetric data received from digital images taken by the Canon EOS 1D Mark III digital camera calibrated in the Institute of Photogrammetry at the University of Bonn (Germany). The images were received applying the PhotoMod photogrammetric software produced in Russia. TIN (Triangulated Irregular Network) and an orthophoto map were made in the investigated objects. The modelling analysis of TIN data was made using ArcGIS software. The purpose of the article is to reconstruct the surface of heritage objects referring to photogrammetric data, to investigate accuracy dependence of heritage object reflection on the methods of preparing the initial data and to evaluate the influence of modelling methods on to the accuracy of reconstructing heritage objects when modelling photogrammetric data and selecting the most appropriate method of modelling parameters to restore the most accurate surface of the heritage object. Santrauka Straipsnyje aprašomos paveldo – architektūrinio objekto paviršiaus modeliavimo galimybės. Modeliavimas atliktas pagal fotogrametrinius objekto duomenis–skaitmenines nuotraukas, darytas kalibruota fotokamera Canon EOS 1D Mark III. Kamera kalibruota Bonos universiteto Fotogrametrijos institute (Vokietija). Objekto nuotraukos apdorotos fotogrametrine kompiuterine programa PhotoMod (Rusija). Sudaryta objekto ortofotografinė nuotrauka ir, parenkant skirtingus duomenų šaltinius, paviršiaus TIN (triangulated irregular network). Skirtingais metodais, naudojantis ArcGIS programa, atliktas fotogrametrinių TIN duomenų modeliavimas ir gauti objekto paviršiaus vaizdai. Įvertintas rezultatų tikslumas ir kokybė. Резюме Описываются возможности моделирования поверхности объекта архитектурного наследия. Моделирование осуществляется с использованием фотограмметрических данных объекта – цифровых снимков, снятых калибрированной цифровой камерой Canon EOS 1D Mark III. Камера калибрирована в Институте фотограмметрии Боннского университета (Германия). Снимки объекта обработаны по фотограмметрической компьютерной программе PhotoMod (Россия). Cделан ортофотографический снимок объекта и с помощью разных источников данных TIN (Triangulated Irregular Network) поверхности. Используя программу ArcGIS, разными методами проведено моделирование фотограмметрических TIN данных и получены изображения поверхности объекта. Осуществлена оценка точности и качества результатов.


2021 ◽  
Author(s):  
Hui Wang ◽  
Shuaibin Chang ◽  
Divya Varadarajan ◽  
Jiarui Yang ◽  
Ichun Anderson Chen ◽  
...  

Optical Coherence Tomography (OCT) is an emerging 3D imaging technique that allows quantification of intrinsic optical properties such as scattering coefficient and back-scattering coefficient, and has proved useful in distinguishing delicate microstructures in the human brain. The origins of scattering in brain tissues are contributed by the myelin content, neuron size and density primarily; however, no quantitative relationships between them have been reported, which hampers the use of OCT in fundamental studies of architectonic areas in the human brain and the pathological evaluations of diseases. To date, histology remains the golden standard, which is prone to errors and can only work on a small number of subjects. Here, we demonstrate a novel method that uses serial sectioning OCT to quantitatively measure myelin content and neuron density in the human brain. We found that the scattering coefficient possesses a strong linear relationship with the myelin content across different regions of the human brain, while the neuron density serves as a secondary contribution that only slightly modulates the overall tissue scattering.


2002 ◽  
Author(s):  
Christel Rousseau ◽  
John M. Girkin ◽  
Shilpa Vaidya ◽  
Andrew F. Hall ◽  
C. J. Whitters ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document