scholarly journals Midpoint Relay Selection Using Social Trust and Battery Level to Enhance Throughput in Cooperative Device-to-Device Communications

Sensors ◽  
2020 ◽  
Vol 20 (21) ◽  
pp. 6007
Author(s):  
Ushik Shrestha Khwakhali ◽  
Prapun Suksompong ◽  
Steven Gordon

Device-to-device communications in underlay mode has emerged as a promising way to enhance spectrum efficiency in cellular networks. Recently, relay selection in D2D communications underlaying cellular networks is gaining more research interest. In this paper, we propose two relay selection schemes for D2D communications underlaying cellular networks, Midpoint Relay Selection using Social Trust and Battery Level (MRS-ST-BL) and Midpoint Relay Selection using Social Distance and Battery Level (MRS-SD-BL). These proposed schemes utilize battery power level information of devices together with social trust information of users in the network for relay selection. For performance evaluation, initially we show that the throughput of state-of-the-art schemes Hybrid Relay Selection (HRS) and our previously proposed schemes Midpoint Relay Selection using Social Trust (MRS-ST) and Midpoint Relay Selection Using Social Distance (MRS-SD) decrease, when relays have varying battery power. Then, we compare the performance of our proposed schemes against existing schemes including HRS, MRS-ST and MRS-SD. The performance comparison is done at various social trust scenarios and device densities. We show that our proposed schemes can significantly improve the throughput of D2D communications, particularly when relays have different battery power levels in weak social trust scenarios. Finally, we show that the performance of our proposed scheme MRS-ST-BL varies with the change in battery power threshold.

Author(s):  
Shamganth K ◽  
Said Shafi Abdullah Al-Shabibia

Device-to-device (D2D) communications underlayed to a cellular infrastructure has recently been proposed to increase spectrum and energy efficiency. Relay selection plays a vital role in cooperative networks. In D2D communication, if the chosen relay is not the best relay, then the whole communication will not be successful from source node to destination node. Also to choose the optimal relays, if more feedback and time delay exists between the source nodes and relay node then it leads to degradation of spectral efficiency.  A survey on the relay selection techniques used with D2D communications and the challenges and design issues associated with the integration of D2D in 5G cellular network is presented.


Sensors ◽  
2020 ◽  
Vol 20 (4) ◽  
pp. 1128 ◽  
Author(s):  
Devarani Devi Ningombam ◽  
Seokjoo Shin

In the last few years, multicast device-to-device (D2D) cellular networks has become a highly attractive area of research. However, a particularly challenging class of issues in this area is data traffic, which increases due to increase in video and audio streaming applications. Therefore, there is need for smart spectrum management policies. In this paper, we consider a fractional frequency reuse (FFR) technique which divides the whole spectrum into multiple sections and allows reusing of spectrum resources between the conventional cellular users and multicast D2D users in a non-orthogonal scenario. Since conventional cellular users and multicast D2D users shared same resources simultaneously, they generate severe data traffic and high communication overhead. To overcome these issues, in this paper we propose Lagrange relaxation technique to solve the non-convex problem and combinatorial auction-based matching algorithm to select the most desirable resource reuse partners by fulfilling the quality of service (QoS) requirements for both the conventional cellular users and multicast D2D users. Then, we formulate an optimization problem to maximize the overall system performance with least computational complexity. We demonstrate that our method can exploit a higher data rate, spectrum efficiency, traffic offload rate, coverage probability, and lower computational complexity.


2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Gábor Fodor

Device-to-device (D2D) communications in cellular spectrum have the potential of increasing the spectral and energy efficiency by taking advantage of the proximity and reuse gains. Although several resource allocation (RA) and power control (PC) schemes have been proposed in the literature, a comparison of the performance of such algorithms as a function of the available channel state information has not been reported. In this paper, we examine which large scale channel gain knowledge is needed by practically viable RA and PC schemes for network assisted D2D communications. To this end, we propose a novel near-optimal and low-complexity RA scheme that can be advantageously used in tandem with the optimal binary power control scheme and compare its performance with three heuristics-based RA schemes that are combined either with the well-known 3GPP Long-Term Evolution open-loop path loss compensating PC or with an iterative utility optimal PC scheme. When channel gain knowledge about the useful as well as interfering (cross) channels is available at the cellular base station, the near-optimal RA scheme, termed Matching, combined with the binary PC scheme is superior. Ultimately, we find that the proposed low-complexity RA + PC tandem that uses some cross-channel gain knowledge provides superior performance.


2015 ◽  
Vol 713-715 ◽  
pp. 1413-1418
Author(s):  
Zhi Hao Ruan ◽  
Shi Xiang Shao ◽  
Jun Sun

With the development of mobile communication, D2D (Device-to-Device technology) has become a research hotpot. In this paper, we first derive the channel capacity of an n-hop link and get the formula of spectrum efficiency. And then to maximize the spectrum efficiency, we focus the algorithm of selecting the best relay for data transmission in a D2D cluster of cellular network. The algorithm proposed in this paper is an improvement of the greedy algorithm. This algorithm solves the problem that the greedy algorithm would be invalid in the case of having a big hole in the topology. At last, we could see a significant gain in terms of spectrum efficiency by using the new relay selection algorithm.


Sign in / Sign up

Export Citation Format

Share Document