scholarly journals Separable MSE-Based Design of Two-Way Multiple-Relay Cooperative MIMO 5G Networks

Sensors ◽  
2020 ◽  
Vol 20 (21) ◽  
pp. 6284
Author(s):  
Donatella Darsena ◽  
Giacinto Gelli ◽  
Ivan Iudice ◽  
Francesco Verde

While the combination of multi-antenna and relaying techniques has been extensively studied for Long Term Evolution Advanced (LTE-A) and Internet of Things (IoT) applications, it is expected to still play an important role in 5th Generation (5G) networks. However, the expected benefits of these technologies cannot be achieved without a proper system design. In this paper, we consider the problem of jointly optimizing terminal precoders/decoders and relay forwarding matrices on the basis of the sum mean square error (MSE) criterion in multiple-input multiple-output (MIMO) two-way relay systems, where two multi-antenna nodes mutually exchange information via multi-antenna amplify-and-forward relays. This problem is nonconvex and a local optimal solution is typically found by using iterative algorithms based on alternating optimization. We show how the constrained minimization of the sum-MSE can be relaxed to obtain two separated subproblems which, under mild conditions, admit a closed-form solution. Compared to iterative approaches, the proposed design is more suited to be integrated in 5G networks, since it is computationally more convenient and its performance exhibits a better scaling in the number of relays.

2020 ◽  
Vol 10 (23) ◽  
pp. 8735
Author(s):  
Jae-Hyun Ro ◽  
Woon-Sang Lee ◽  
Hyun-Sun Hwang ◽  
Duckdong Hwang ◽  
Young-Hwan You ◽  
...  

This paper proposes an estimation scheme of the number iterations for optimal Gauss–Seidel (GS) pre-coding in the downlink massive multiple input multiple output (MIMO) systems for the first time. The number of iterations in GS pre-coding is one of the key parameters and should be estimated accurately prior to signal transmission in the downlink systems. For efficient estimation without presentations of the closed-form solution for the GS pre-coding symbols, the proposed estimation scheme uses the relative method which calculates the normalized Euclidean distance (NED) between consecutive GS solutions by using the property of the monotonic decrease function of the GS solutions. Additionally, an efficient initial solution for the GS pre-coding is proposed as a two term Neumann series (NS) based on the stair matrix for improving the accuracy of estimation and accelerating the convergence rate of the GS solution. The evaluated estimation performances verify high accuracy in the downlink massive MIMO systems even in low loading factors. In addition, an additional complexity for estimating the number of the optimal iterations is nearly negligible.


2014 ◽  
Vol 2014 ◽  
pp. 1-11
Author(s):  
Gaofeng Cui ◽  
Yanjie Dong ◽  
Weidong Wang ◽  
Yinghai Zhang

Other cell interference (OCI) degrades the achievable capacity of downlink multiuser multiple-input multiple-output (MU-MIMO) systems seriously. Among OCI mitigation schemes, methods that sacrificeξdegrees of freedom to nullify the OCI have been proven to be helpful to improve the cell edge throughput. However, since interference nulling schemes can only improve the signal to interference plus noise ratio (SINR) ofξusers, they are not optimal in terms of average cell throughput, especially for low to medium OCI levels. We explore the question whether it is better to improve the SINR of every user in other cells rather than benefitξusers. An altruistic precoding method to minimize the sum of generated interference for all of the other cell users is proposed withξdegrees of freedom being sacrificed. With the altruistic precoding method, we deduce the lower bound on the capacity and solve the multicell user selection problem with a local optimal solution in which only eigenvalues of interfering channels are needed to be shared. Simulation results demonstrate that the proposed method outperforms the existing algorithms at any OCI level. Furthermore, we also analyze the best choice of degrees of freedom used to mitigate OCI through simulation.


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Junxiang Wang ◽  
Ping Huang ◽  
Dingjie Xu

A joint direction-of-departure (DOD) and direction-of-arrival (DOA) estimation algorithm based on tensor subspace approach for partially calibrated bistatic multiple-input multiple-output (MIMO) radar is proposed. By exploiting the multidimensional structure of the received data, a third-order measurement tensor is constructed. Consequently, the tensor-based signal subspace is achieved using the higher-order singular value decomposition (HOSVD). To achieve accurate DOA estimation with partially calibrated array, a closed-form solution is provided to estimate the gain-phase uncertainties of the transmit and receive arrays by modeling the imperfections of the arrays. Simulation results demonstrate the effectiveness of the proposed calibration algorithm.


Author(s):  
Nguyen N. Tran ◽  
Ha X. Nguyen

A capacity analysis for generally correlated wireless multi-hop multi-input multi-output (MIMO) channels is presented in this paper. The channel at each hop is spatially correlated, the source symbols are mutually correlated, and the additive Gaussian noises are colored. First, by invoking Karush-Kuhn-Tucker condition for the optimality of convex programming, we derive the optimal source symbol covariance for the maximum mutual information between the channel input and the channel output when having the full knowledge of channel at the transmitter. Secondly, we formulate the average mutual information maximization problem when having only the channel statistics at the transmitter. Since this problem is almost impossible to be solved analytically, the numerical interior-point-method is employed to obtain the optimal solution. Furthermore, to reduce the computational complexity, an asymptotic closed-form solution is derived by maximizing an upper bound of the objective function. Simulation results show that the average mutual information obtained by the asymptotic design is very closed to that obtained by the optimal design, while saving a huge computational complexity.


2021 ◽  
Author(s):  
Victor Martínez-de-Albéniz ◽  
Sumit Kunnumkal

Integrating inventory and assortment planning decisions is a challenging task that requires comparing the value of demand expansion through broader choice for consumers with the value of higher in-stock availability. We develop a stockout-based substitution model for trading off these values in a setting with inventory replenishment, a feature missing in the literature. Using the closed form solution for the single-product case, we develop an accurate approximation for the multiproduct case. This approximated formulation allows us to optimize inventory decisions by solving a fractional integer program with a fixed point equation constraint. When products have equal margins, we solve the integer program exactly by bisection over a one-dimensional parameter. In contrast, when products have different margins, we propose a fractional relaxation that we can also solve by bisection and that results in near-optimal solutions. Overall, our approach provides solutions within 0.1% of the optimal policy and finds the optimal solution in 80% of the random instances we generate. This paper was accepted by David Simchi-Levi, optimization.


Sensors ◽  
2019 ◽  
Vol 19 (1) ◽  
pp. 182 ◽  
Author(s):  
Xiaoqing Liu ◽  
Zhigang Wen ◽  
Dan Liu ◽  
Junwei Zou ◽  
Shan Li

We consider a multiple-input multiple-output amplify-and-forward wireless multiple-hop sensor network (WMSN). The simultaneous wireless information and power transfer technology is deployed to potentially achieve an autonomous system. We investigate two practical receiver schemes, which are the power splitting (PS) and the time switching (TS). The power splitting receiver splits received signals into two streams, one for information decoding (ID) and the other for energy harvesting (EH). On the other hand, the time switching receiver only serves in ID mode or energy harvesting mode during a certain time slot. Subject to transmit power constraints and destination harvested energy constraint, we aim to obtain a joint beam-forming solution of source and relay precoders to maximize the maximum achievable rate of the WSN. In order to make the non-convex problem tractable, diagonalization-based alternating optimization algorithms are proposed. Numerical results show the convergence and good performance of the proposed algorithms under both PS and TS protocols.


2020 ◽  
Vol 10 (17) ◽  
pp. 5971 ◽  
Author(s):  
Sven Kuehn ◽  
Serge Pfeifer ◽  
Niels Kuster

In this study, the total electromagnetic dose, i.e., the combined dose from fixed antennas and mobile devices, was estimated for a number of hypothetical network topologies for implementation in Switzerland to support the deployment of fifth generation (5G) mobile communication systems while maintaining exposure guidelines for public safety. In this study, we consider frequency range 1 (FR1) and various user scenarios. The estimated dose in hypothetical 5G networks was extrapolated from measurements in one of the Swiss 4G networks and by means of Monte Carlo analysis. The results show that the peak dose is always dominated by an individual’s mobile phone and, in the case of non-users, by the bystanders’ mobile phones. The reduction in cell size and the separation of indoor and outdoor coverage can substantially reduce the total dose by >10 dB. The introduction of higher frequencies in 5G mobile networks, e.g., 3.6 GHz, reduces the specific absorption rate (SAR) in the entire brain by an average of −8 dB, while the SAR in the superficial tissues of the brain remains locally constant, i.e., within ±3 dB. Data from real networks with multiple-input multiple-output (MIMO) were not available; the effect of adaptive beam-forming antennas on the dose will need to be quantitatively revisited when 5G networks are fully established.


Author(s):  
Ravisankar Malladi ◽  
Manoj Kumar Beuria ◽  
Ravi Shankar ◽  
Sudhansu Sekhar Singh

In modern wireless communication scenarios, non-orthogonal multiple access (NOMA) provides high throughput and spectral efficiency for fifth generation (5G) and beyond 5G systems. Traditional NOMA detectors are based on successive interference cancellation (SIC) techniques at both uplink and downlink NOMA transmissions. However, due to imperfect SIC, these detectors are not suitable for defense applications. In this paper, we investigate the 5G multiple-input multiple-output NOMA deep learning technique for defense applications and proposed a learning approach that investigates the communication system’s channel state information automatically and identifies the initial transmission sequences. With the use of the proposed deep neural network, the optimal solution is provided, and performance is much better than the traditional SIC-based NOMA detectors. Through simulations, the analytical outcomes are verified.


Sign in / Sign up

Export Citation Format

Share Document