scholarly journals A Semi-Automated Method to Extract Green and Non-Photosynthetic Vegetation Cover from RGB Images in Mixed Grasslands

Sensors ◽  
2020 ◽  
Vol 20 (23) ◽  
pp. 6870
Author(s):  
Dandan Xu ◽  
Yihan Pu ◽  
Xulin Guo

Green (GV) and non-photosynthetic vegetation (NPV) cover are both important biophysical parameters for grassland research. The current methodology for cover estimation, including subjective visual estimation and digital image analysis, requires human intervention, lacks automation, batch processing capabilities and extraction accuracy. Therefore, this study proposed to develop a method to quantify both GV and standing dead matter (SDM) fraction cover from field-taken digital RGB images with semi-automated batch processing capabilities (i.e., written as a python script) for mixed grasslands with more complex background information including litter, moss, lichen, rocks and soil. The results show that the GV cover extracted by the method developed in this study is superior to that by subjective visual estimation based on the linear relation with normalized vegetation index (NDVI) calculated from field measured hyper-spectra (R2 = 0.846, p < 0.001 for GV cover estimated from RGB images; R2 = 0.711, p < 0.001 for subjective visual estimated GV cover). The results also show that the developed method has great potential to estimate SDM cover with limited effects of light colored understory components including litter, soil crust and bare soil. In addition, the results of this study indicate that subjective visual estimation tends to estimate higher cover for both GV and SDM compared to that estimated from RGB images.

2021 ◽  
Vol 13 (14) ◽  
pp. 2755
Author(s):  
Peng Fang ◽  
Nana Yan ◽  
Panpan Wei ◽  
Yifan Zhao ◽  
Xiwang Zhang

The net primary productivity (NPP) and aboveground biomass mapping of crops based on remote sensing technology are not only conducive to understanding the growth and development of crops but can also be used to monitor timely agricultural information, thereby providing effective decision making for agricultural production management. To solve the saturation problem of the NDVI in the aboveground biomass mapping of crops, the original CASA model was improved using narrow-band red-edge information, which is sensitive to vegetation chlorophyll variation, and the fraction of photosynthetically active radiation (FPAR), NPP, and aboveground biomass of winter wheat and maize were mapped in the main growing seasons. Moreover, in this study, we deeply analyzed the seasonal change trends of crops’ biophysical parameters in terms of the NDVI, FPAR, actual light use efficiency (LUE), and their influence on aboveground biomass. Finally, to analyze the uncertainty of the aboveground biomass mapping of crops, we further discussed the inversion differences of FPAR with different vegetation indices. The results demonstrated that the inversion accuracies of the FPAR of the red-edge normalized vegetation index (NDVIred-edge) and red-edge simple ratio vegetation index (SRred-edge) were higher than those of the original CASA model. Compared with the reference data, the accuracy of aboveground biomass estimated by the improved CASA model was 0.73 and 0.70, respectively, which was 0.21 and 0.13 higher than that of the original CASA model. In addition, the analysis of the FPAR inversions of different vegetation indices showed that the inversion accuracies of the red-edge vegetation indices NDVIred-edge and SRred-edge were higher than those of the other vegetation indices, which confirmed that the vegetation indices involving red-edge information can more effectively retrieve FPAR and aboveground biomass of crops.


2021 ◽  
Vol 20 (2) ◽  
pp. 1-19
Author(s):  
Tahmid Anam Chowdhury ◽  
◽  
Md. Saiful Islam ◽  

Urban developments in the cities of Bangladesh are causing the depletion of natural land covers over the past several decades. One of the significant implications of the developments is a change in Land Surface Temperature (LST). Through LST distribution in different Land Use Land Cover (LULC) and a statistical association among LST and biophysical indices, i.e., Urban Index (UI), Bare Soil Index (BI), Normalized Difference Builtup Index (NDBI), Normalized Difference Bareness Index (NDBaI), Normalized Difference Vegetation Index (NDVI), and Modified Normalized Difference Water Index (MNDWI), this paper studied the implications of LULC change on the LST in Mymensingh city. Landsat TM and OLI/TIRS satellite images were used to study LULC through the maximum likelihood classification method and LSTs for 1989, 2004, and 2019. The accuracy of LULC classifications was 84.50, 89.50, and 91.00 for three sampling years, respectively. From 1989 to 2019, the area and average LST of the built-up category has been increased by 24.99% and 7.6ºC, respectively. Compared to vegetation and water bodies, built-up and barren soil regions have a greater LST each year. A different machine learning method was applied to simulate LULC and LST in 2034. A remarkable change in both LULC and LST was found through this simulation. If the current changing rate of LULC continues, the built-up area will be 59.42% of the total area, and LST will be 30.05ºC on average in 2034. The LST in 2034 will be more than 29ºC and 31ºC in 59.64% and 23.55% areas of the city, respectively.


2020 ◽  
Vol 13 (1) ◽  
pp. 286 ◽  
Author(s):  
Alan Cézar Bezerra ◽  
Jhon Lennon Bezerra da Silva ◽  
Douglas Alberto De Oliveira Silva ◽  
Pedro Henrique Dias Batista ◽  
Liliane Da Cruz Pinheiro ◽  
...  

O sensoriamento remoto pode ser utilizado no monitoramento ambiental de parâmetros biofísicos micrometeorológicos nas regiões semiáridas do Brasil. Objetivou-se monitorar o risco da degradação ambiental através da detecção de mudanças da superfície no semiárido por sensoriamento remoto. A pesquisa foi desenvolvida através do processamento digital de imagens de satélite para Serra Talhada, Pernambuco. Foram coletados dados de superfície para subsidiar o algoritmo do balanço de energia da superfície terrestre (SEBAL) na estimativa do albedo e temperatura da superfície e o índice de vegetação ajustado as condições do solo (SAVI). Além disso, se desenvolveu mapas temáticos do grau do risco de degradação. Os mapas da degradação foram submetidos a avaliação estatística de qualidade temática, por matriz de confusão. O SAVI apresentou-se sensível à chuva, tendo na estação chuvosa os maiores valores e na estação seca os menores, período que o albedo e a temperatura apresentaram valores elevados, indicando vulnerabilidade à degradação das áreas com pouca vegetação e solo exposto. Os mapas do risco de degradação destacaram características semelhantes aos padrões de respostas do SAVI, albedo e temperatura. O monitoramento espaço-temporal dos parâmetros biofísicos e do risco de degradação permitirá o planejamento e gestão dos recursos hídricos e naturais da região semiárida. Spatial-Temporal Monitoring Detection of Changes in Caatinga Vegetation by Remote Sensing in the Brazilian Semiarid A B S T R A C TRemote sensing can be used for environmental monitoring of micrometeorological biophysical parameters in the semiarid regions of Brazil. The present investigation aimed to monitor the risk of environmental degradation by detecting surface changes in the semiarid by means of remote sensing. The research was developed through digital processing of satellite images for Serra Talhada, Pernambuco, Brazil. Surface data were collected to support the Surface Energy Balance algorithm (SEBAL) to estimate the albedo and the surface temperatures as well as the soil condition adjusted to the vegetation index (SAVI). Furthermore, thematic maps were developed for the levels of risk of degradation and statistical evaluation was performed on the thematic quality by means of confounding matrix. The SAVI was sensitive to precipitation, displaying the highest values for the rainy season and the lowest for the dry season, for which the albedo and the surface temperature presented higher values, thus indicating vulnerability to degradation in areas of scarce vegetation and exposed soil. The risk of degradation maps highlighted characteristics similar to SAVI response patterns, albedo and surface temperature. The spatiotemporal monitoring of biophysical parameters and the risk of degradation will enable both the planning and the management of water and natural resources in the semiarid region.Keywords: Agrometeorology, Caatinga, Environmental Degradation, Deforestation; Environmental Impacts.


2021 ◽  
Vol 42 (4) ◽  
pp. 2181-2202
Author(s):  
Taiara Souza Costa ◽  
◽  
Robson Argolo dos Santos ◽  
Rosângela Leal Santos ◽  
Roberto Filgueiras ◽  
...  

This study proposes to estimate the actual crop evapotranspiration, using the SAFER model, as well as calculate the crop coefficient (Kc) as a function of the normalized difference vegetation index (NDVI) and determine the biomass of an irrigated maize crop using images from the Operational Land Imager (OLI) and Thermal Infrared (TIRS) sensors of the Landsat-8 satellite. Pivots 21 to 26 of a commercial farm located in the municipalities of Bom Jesus da Lapa and Serra do Ramalho, west of Bahia State, Brazil, were selected. Sowing dates for each pivot were arranged as North and South or East and West, with cultivation starting firstly in one of the orientations and subsequently in the other. The relationship between NDVI and the Kc values obtained in the FAO-56 report (KcFAO) revealed a high coefficient of determination (R2 = 0.7921), showing that the variance of KcFAO can be explained by NDVI in the maize crop. Considering the center pivots with different planting dates, the crop evapotranspiration (ETc) pixel values ranged from 0.0 to 6.0 mm d-1 during the phenological cycle. The highest values were found at 199 days of the year (DOY), corresponding to around 100 days after sowing (DAS). The lowest BIO values occur at 135 DOY, at around 20 DAS. There is a relationship between ETc and BIO, where the DOY with the highest BIO are equivalent to the days with the highest ETc values. In addition to this relationship, BIO is strongly influenced by soil water availability.


2021 ◽  
pp. 50-58
Author(s):  
Michael Yu. Kataev ◽  
Maria M. Dadonova ◽  
Dmitry S. Efremenko

The goal of this research was to study and optimize multi-temporal RGB images obtained by a UAV (unmanned aerial vehicle). A digital camera onboard the UAV allows obtaining data with a high temporal and spatial resolution of ground objects. In the case considered by us, the object of study is agricultural fields, for which, based on numerous images covering the agricultural field, image mosaics (orthomosaics) are constructed. The acquisition time for each orthomosaic takes at least several hours, which imposes a change in the illuminance of each image, when considered separately. Orthomosaics obtained in different periods of the year (several months) will also differ from each other in terms of illuminance. For a comparative analysis of different parts of the field (orthomosaic), obtained in the same time interval or comparison of areas for different periods of time, their alignment by illumination is required. Currently, the majority of alignment approaches rely rather on colour (RGB) methods, which cannot guarantee finding efficient solutions, especially when it is necessary to obtain a quantitative result. In the paper, a new method is proposed that takes into account the change in illuminance during the acquisition of each image. The general formulation of the problem of light correction of RGB images in terms of assessing the colour vegetation index Greenness is considered. The results of processing real measurements are presented.


2019 ◽  
Vol 11 (19) ◽  
pp. 2228 ◽  
Author(s):  
Ali Nasrallah ◽  
Nicolas Baghdadi ◽  
Mohammad El Hajj ◽  
Talal Darwish ◽  
Hatem Belhouchette ◽  
...  

The ability of Synthetic Aperture Radar (SAR) Sentinel-1 data to detect the main wheat phenological phases was investigated in the Bekaa plain of Lebanon. Accordingly, the temporal variation of Sentinel-1 (S1) signal was analyzed as a function of the phenological phases’ dates observed in situ (germination; heading and soft dough), and harvesting. Results showed that S1 data, unlike the Normalized Difference Vegetation Index (NDVI) data, were able to estimate the dates of theses phenological phases due to significant variations in S1 temporal series at the dates of germination, heading, soft dough, and harvesting. Particularly, the ratio VV/VH at low incidence angle (32–34°) was able to detect the germination and harvesting dates. VV polarization at low incidence angle (32–34°) was able to detect the heading phase, while VH polarization at high incidence angle (43–45°) was better than that at low incidence angle (32–34°), in detecting the soft dough phase. An automated approach for main wheat phenological phases’ determination was then developed on the western part of the Bekaa plain. This approach modelled the S1 SAR temporal series by smoothing and fitting the temporal series with Gaussian functions (up to three Gaussians) allowing thus to automatically detect the main wheat phenological phases from the sum of these Gaussians. To test its robustness, the automated method was applied on the northern part of the Bekaa plain, in which winter wheat is harvested usually earlier because of the different weather conditions. The Root Mean Square Error (RMSE) of the estimation of the phenological phases’ dates was 2.9 days for germination, 5.5 days for heading, 5.1 days soft dough, 3.0 days for West Bekaa’s harvesting, and 4.5 days for North Bekaa’s harvesting. In addition, a slight underestimation was observed for germination and heading of West Bekaa (−0.2 and −1.1 days, respectively) while an overestimation was observed for soft dough of West Bekaa and harvesting for both West and North Bekaa (3.1, 0.6, and 3.6 days, respectively). These results are encouraging, and thus prove that S1 data are powerful as a tool for crop monitoring, to serve enhanced crop management and production handling.


2020 ◽  
Vol 10 (16) ◽  
pp. 5540 ◽  
Author(s):  
Maria Casamitjana ◽  
Maria C. Torres-Madroñero ◽  
Jaime Bernal-Riobo ◽  
Diego Varga

Surface soil moisture is an important hydrological parameter in agricultural areas. Periodic measurements in tropical mountain environments are poorly representative of larger areas, while satellite resolution is too coarse to be effective in these topographically varied landscapes, making spatial resolution an important parameter to consider. The Las Palmas catchment area near Medellin in Colombia is a vital water reservoir that stores considerable amounts of water in its andosol. In this tropical Andean setting, we use an unmanned aerial vehicle (UAV) with multispectral (visible, near infrared) sensors to determine the correlation of three agricultural land uses (potatoes, bare soil, and pasture) with surface soil moisture. Four vegetation indices (the perpendicular drought index, PDI; the normalized difference vegetation index, NDVI; the normalized difference water index, NDWI, and the soil-adjusted vegetation index, SAVI) were applied to UAV imagery and a 3 m resolution to estimate surface soil moisture through calibration with in situ field measurements. The results showed that on bare soil, the indices that best fit the soil moisture results are NDVI, NDWI and PDI on a detailed scale, whereas on potatoes crops, the NDWI is the index that correlates significantly with soil moisture, irrespective of the scale. Multispectral images and vegetation indices provide good soil moisture understanding in tropical mountain environments, with 3 m remote sensing images which are shown to be a good alternative to soil moisture analysis on pastures using the NDVI and UAV images for bare soil and potatoes.


2019 ◽  
Vol 11 (23) ◽  
pp. 2757 ◽  
Author(s):  
Akash Ashapure ◽  
Jinha Jung ◽  
Anjin Chang ◽  
Sungchan Oh ◽  
Murilo Maeda ◽  
...  

This study presents a comparative study of multispectral and RGB (red, green, and blue) sensor-based cotton canopy cover modelling using multi-temporal unmanned aircraft systems (UAS) imagery. Additionally, a canopy cover model using an RGB sensor is proposed that combines an RGB-based vegetation index with morphological closing. The field experiment was established in 2017 and 2018, where the whole study area was divided into approximately 1 x 1 m size grids. Grid-wise percentage canopy cover was computed using both RGB and multispectral sensors over multiple flights during the growing season of the cotton crop. Initially, the normalized difference vegetation index (NDVI)-based canopy cover was estimated, and this was used as a reference for the comparison with RGB-based canopy cover estimations. To test the maximum achievable performance of RGB-based canopy cover estimation, a pixel-wise classification method was implemented. Later, four RGB-based canopy cover estimation methods were implemented using RGB images, namely Canopeo, the excessive greenness index, the modified red green vegetation index and the red green blue vegetation index. The performance of RGB-based canopy cover estimation was evaluated using NDVI-based canopy cover estimation. The multispectral sensor-based canopy cover model was considered to be a more stable and accurately estimating canopy cover model, whereas the RGB-based canopy cover model was very unstable and failed to identify canopy when cotton leaves changed color after canopy maturation. The application of a morphological closing operation after the thresholding significantly improved the RGB-based canopy cover modeling. The red green blue vegetation index turned out to be the most efficient vegetation index to extract canopy cover with very low average root mean square error (2.94% for the 2017 dataset and 2.82% for the 2018 dataset), with respect to multispectral sensor-based canopy cover estimation. The proposed canopy cover model provides an affordable alternate of the multispectral sensors which are more sensitive and expensive.


2006 ◽  
Vol 45 (1) ◽  
pp. 210-235 ◽  
Author(s):  
Claude E. Duchon ◽  
Kenneth G. Hamm

Abstract Time series of daily broadband surface albedo for 1998 and 1999 have been analyzed from six locations in the network of 22 Atmospheric Radiation Measurement Program Solar–Infrared Radiation Stations distributed from central Kansas to central Oklahoma. Two of the stations are in Kansas, and four are in Oklahoma; together they reasonably encompass the variation in geography in the southern Great Plains. Daily precipitation totals locally measured or obtained from nearby Oklahoma Mesonet stations and time series of biweekly maximum normalized difference vegetation index obtained from NOAA’s Advanced Very High Resolution Radiometer were used to determine linkages between surface albedo and amount of precipitation and degree of green vegetation. As part of this determination, daily albedo was categorized according to sky condition, that is, clear, partly cloudy, or overcast, with appropriate boundaries for each category. The more notable results are the following: 1) 2-yr mean annual albedos varied by more than 20% among the six sites, the lowest albedo being 0.18 and the highest albedo being 0.22; 2) the numerical difference was about 4 times the maximum interannual mean difference among the six stations, indicating the importance of geographic location; 3) for sites with a large amount of bare soil, a systematic decrease in albedo in response to rainfall events and a systematic increase in albedo as the soil dried were observed; 4) at the one site with total vegetation cover, that is, no bare soil, albedo response to precipitation events was suppressed; 5) no relation was found between mean annual albedo and annual precipitation; 6) whether days were classified as clear or partly cloudy had little influence on daily albedo, but overcast days typically reduced albedo, sometimes substantially; and 7) the main contributor to low albedos on overcast days with rain was the wet surface; the contribution by the overcast sky was secondary.


Sign in / Sign up

Export Citation Format

Share Document