scholarly journals A Novel Path Planning Algorithm for Truck Platooning Using V2V Communication

Sensors ◽  
2020 ◽  
Vol 20 (24) ◽  
pp. 7022
Author(s):  
Yongki Lee ◽  
Taewon Ahn ◽  
Chanhwa Lee ◽  
Sangjun Kim ◽  
Kihong Park

In truck platooning, the leading vehicle is driven manually, and the following vehicles run by autonomous driving, with the short inter-vehicle distance between trucks. To successfully perform platooning in various situations, each truck must maintain dynamic stability, and furthermore, the whole system must maintain string stability. Due to the short front-view range, however, the following vehicles’ path planning capabilities become significantly impaired. In addition, in platooning with articulated cargo trucks, the off-tracking phenomenon occurring on a curved road makes it hard for the following vehicle to track the trajectory of the preceding truck. In addition, without knowledge of the global coordinate system, it is difficult to correlate the local coordinate systems that each truck relies on for sensing environment and dynamic signals. In this paper, in order to solve these problems, a path planning algorithm for platooning of articulated cargo trucks has been developed. Using the Kalman filter, V2V (Vehicle-to-Vehicle) communication, and a novel update-and-conversion method, each following vehicle can accurately compute the trajectory of the leading vehicle’s front part for using it as a target path. The path planning algorithm of this paper was validated by simulations on severe driving scenarios and by tests on an actual road. The results demonstrated that the algorithm could provide lateral string stability and robustness for truck platooning.

2021 ◽  
Vol 11 (9) ◽  
pp. 3909
Author(s):  
Changhyeon Park ◽  
Seok-Cheol Kee

In this paper, an urban-based path planning algorithm that considered multiple obstacles and road constraints in a university campus environment with an autonomous micro electric vehicle (micro-EV) is studied. Typical path planning algorithms, such as A*, particle swarm optimization (PSO), and rapidly exploring random tree* (RRT*), take a single arrival point, resulting in a lane departure situation on the high curved roads. Further, these could not consider urban-constraints to set collision-free obstacles. These problems cause dangerous obstacle collisions. Additionally, for drive stability, real-time operation should be guaranteed. Therefore, an urban-based online path planning algorithm, which is robust in terms of a curved-path with multiple obstacles, is proposed. The algorithm is constructed using two methods, A* and an artificial potential field (APF). To validate and evaluate the performance in a campus environment, autonomous driving systems, such as vehicle localization, object recognition, vehicle control, are implemented in the micro-EV. Moreover, to confirm the algorithm stability in the complex campus environment, hazard scenarios that complex obstacles can cause are constructed. These are implemented in the form of a delivery service using an autonomous driving simulator, which mimics the Chungbuk National University (CBNU) campus.


2018 ◽  
Vol 8 (4) ◽  
pp. 35 ◽  
Author(s):  
Jörg Fickenscher ◽  
Sandra Schmidt ◽  
Frank Hannig ◽  
Mohamed Bouzouraa ◽  
Jürgen Teich

The sector of autonomous driving gains more and more importance for the car makers. A key enabler of such systems is the planning of the path the vehicle should take, but it can be very computationally burdensome finding a good one. Here, new architectures in ECU are required, such as GPU, because standard processors struggle to provide enough computing power. In this work, we present a novel parallelization of a path planning algorithm. We show how many paths can be reasonably planned under real-time requirements and how they can be rated. As an evaluation platform, an Nvidia Jetson board equipped with a Tegra K1 SoC was used, whose GPU is also employed in the zFAS ECU of the AUDI AG.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Li-sang Liu ◽  
Jia-feng Lin ◽  
Jin-xin Yao ◽  
Dong-wei He ◽  
Ji-shi Zheng ◽  
...  

Path planning and obstacle avoidance are essential for autonomous driving cars. On the base of a self-constructed smart obstacle avoidance car, which used a LeTMC-520 depth camera and Jetson controller, this paper established a map of an unknown indoor environment based on depth information via SLAM technology. The Dijkstra algorithm is used as the global path planning algorithm and the dynamic window approach (DWA) as its local path planning algorithm, which are applied to the smart car, enabling it to successfully avoid obstacles from the planned initial position and reach the designated position. The tests on the smart car prove that the system can complete the functions of environment map establishment, path planning and navigation, and obstacle avoidance.


2016 ◽  
Vol 850 ◽  
pp. 16-22
Author(s):  
Özge Özdemir ◽  
İslam Kılıç ◽  
Ahmet Yazıcı ◽  
Kemal Özkan

An advanced driver assistance system (ADAS) is the premium technology for autonomous driving. It uses data from vision/camera systems, data from in vehicle sensors, and data from vehicle-to-vehicle (V2V) or Vehicle-to-Infrastructure (V2I) communication systems. The next generation systems even autonomous vehicles are expected to use the V2V information to increase the safety for non-line of sight environments. Exchanging some data like vehicle position, speed, status etc., helps to the driver about potential problems, or to avoid collisions. In this paper, a V2V communication system module is designed and tested on the vehicles.


Energies ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 247
Author(s):  
Feihu Zhang ◽  
Can Wang ◽  
Chensheng Cheng ◽  
Dianyu Yang ◽  
Guang Pan

Path planning is often considered as an important task in autonomous driving applications. Current planning method only concerns the knowledge of robot kinematics, however, in GPS denied environments, the robot odometry sensor often causes accumulated error. To address this problem, an improved path planning algorithm is proposed based on reinforcement learning method, which also calculates the characteristics of the cumulated error during the planning procedure. The cumulative error path is calculated by the map with convex target processing, while modifying the algorithm reward and punishment parameters based on the error estimation strategy. To verify the proposed approach, simulation experiments exhibited that the algorithm effectively avoid the error drift in path planning.


Sign in / Sign up

Export Citation Format

Share Document