scholarly journals Weakening Investigation of Reservoir Rock by Coupled Uniaxial Compression, Computed Tomography and Digital Image Correlation Methods: A Case Study

Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 344
Author(s):  
Peiwu Shen ◽  
Huiming Tang ◽  
Bocheng Zhang ◽  
Yibing Ning ◽  
Xuexue Su ◽  
...  

Cyclic wetting and drying treatment is commonly used to accelerate the weakening process of reservoir rock. The weakening is reflected in strength variation and structure variation, while the latter receives less attention. Based on a series of cyclic wetting and drying tests, this study tentatively applied the uniaxial compressive test, computed tomography (CT) test and digital image correlation (DIC) test to investigate the weakening of slate in a reservoir area. Test results show that the weakening is mainly reflected in the reduction of compressive strength, followed by the decrease of ability to resist cracking and elastic deformation. The weakening seems more likely to be caused by structure variation rather than composition change. Two failure modes, e.g., splitting and splitting-tension, are concluded based on the crack paths: the splitting failure mode occurs in the highly weathered samples and the splitting-tension failure mode appears in the low-weathered samples. The transition zones of deformation are inside samples. The nephogram maps quantify the continuous deformation and correspond to the aforementioned structure variation process. This study offers comprehensive methods to the weakening investigation of slate in reservoir area and may provide qualitative reference in the stability evaluation of related slate rock slope.

Author(s):  
Pradeep Lall ◽  
Sandeep Shantaram ◽  
Arjun Angral ◽  
Mandar Kulkarni ◽  
Jeff Suhling

Relative damage-index based on the leadfree interconnect transient strain history from digital image correlation, explicit finite-elements, cohesive-zone elements, and component’s survivability envelope has been developed for life-prediction of two-leadfree electronic alloy systems. Life prediction of pristine and thermally-aged assemblies, have been investigated. Solder alloy system studied include Sn1Ag0.5Cu, and 96.5Sn3.5Ag. Transient strains during the shock-impact have been measured using digital image correlation in conjunction with high-speed cameras operating at 50,000 fps. Both the board strains and the package strains have been measured in a variety of drop orientations including JEDEC horizontal drop orientation, vertical drop orientation and intermediate drop orientations. In addition the effect of sequential stresses of thermal aging and shock-impact on the failure mechanisms has also been studied. The thermal aging condition used for the study includes 125°C for 100 hrs. The presented methodology addresses the need for life prediction of new lead-free alloy-systems under shock and vibration, which is largely beyond the state of art. Three failure modes have been predicted including interfacial failure at the copper-solder interface, solder-PCB interface, and the solder joint failure. Explicit non-linear finite element models with cohesive-zone elements have been developed and correlated with experimental results. Velocity data from digital image correlation has been used to drive the attachment degrees of freedom of the submodel and extract transient interconnect strain histories. Explicit finite-element sub-modeling has been correlated with the full-field strain in various locations, orientations, on both the package and the board-side. The survivability of the leadfree interconnections under sequential loading (thermal aging and shock-impact) from simulation has been compared with pristine circuit assemblies subjected to shock-impact. Sequential loading changes the failure modes and decreases the drop reliability as compared to the room temperature experimental results. Damage index based survivability envelope is intended for component integration to ensure reliability in harsh environments.


PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e3416 ◽  
Author(s):  
Zartasha Mustansar ◽  
Samuel A. McDonald ◽  
William Irvin Sellers ◽  
Phillip Lars Manning ◽  
Tristan Lowe ◽  
...  

This paper uses X-ray computed tomography to track the mechanical response of a vertebrate (Barnacle goose) long bone subjected to an axial compressive load, which is increased gradually until failure. A loading rig was mounted in an X-ray computed tomography system so that a time-lapse sequence of three-dimensional (3D) images of the bone’s internal (cancellous or trabecular) structure could be recorded during loading. Five distinct types of deformation mechanism were observed in the cancellous part of the bone. These were (i) cracking, (ii) thinning (iii) tearing of cell walls and struts, (iv) notch formation, (v) necking and (vi) buckling. The results highlight that bone experiences brittle (notch formation and cracking), ductile (thinning, tearing and necking) and elastic (buckling) modes of deformation. Progressive deformation, leading to cracking was studied in detail using digital image correlation. The resulting strain maps were consistent with mechanisms occurring at a finer-length scale. This paper is the first to capture time-lapse 3D images of a whole long bone subject to loading until failure. The results serve as a unique reference for researchers interested in how bone responds to loading. For those using computer modelling, the study not only provides qualitative information for verification and validation of their simulations but also highlights that constitutive models for bone need to take into account a number of different deformation mechanisms.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Buqing Chen ◽  
Jun Wu ◽  
Changjun Liu ◽  
Yanhua Liu ◽  
Wenmei Zhou ◽  
...  

Seven steel-reinforced concrete (SRC) deep beams were tested to investigate the shear performance, including peak loads, failure modes, mid-span deflections, and cracking patterns. The parameters include the shear span-to-depth ratio and the dimensions of the steel skeleton. The digital image correlation (DIC) technique was utilized for real-time recording of the in-plane strain and deformation. The experiment results show that the failure modes of specimens could be concluded as two forms: diagonal compression failure and shear failure. The DIC technique was proved to be efficient for tracking the development of crack patterns and recording the failure modes. The corresponding numerical analyses based on experiments were carried out and demonstrated to be a reliable method to simulate the shear response. Furthermore, the most significant parameters and their interactions were identified by finite element models parameter analysis. The steel skeleton height and shear span-to-depth ratio were the main parameters affecting shear capacity. A design formula based on the strength superposition method was presented. The calculated results were basically in agreement with the test results, where the mean and coefficient of variation were 1.04 and 0.09, respectively.


Sign in / Sign up

Export Citation Format

Share Document