scholarly journals Deep Reinforcement Learning-Based Task Scheduling in IoT Edge Computing

Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1666 ◽  
Author(s):  
Shuran Sheng ◽  
Peng Chen ◽  
Zhimin Chen ◽  
Lenan Wu ◽  
Yuxuan Yao

Edge computing (EC) has recently emerged as a promising paradigm that supports resource-hungry Internet of Things (IoT) applications with low latency services at the network edge. However, the limited capacity of computing resources at the edge server poses great challenges for scheduling application tasks. In this paper, a task scheduling problem is studied in the EC scenario, and multiple tasks are scheduled to virtual machines (VMs) configured at the edge server by maximizing the long-term task satisfaction degree (LTSD). The problem is formulated as a Markov decision process (MDP) for which the state, action, state transition, and reward are designed. We leverage deep reinforcement learning (DRL) to solve both time scheduling (i.e., the task execution order) and resource allocation (i.e., which VM the task is assigned to), considering the diversity of the tasks and the heterogeneity of available resources. A policy-based REINFORCE algorithm is proposed for the task scheduling problem, and a fully-connected neural network (FCN) is utilized to extract the features. Simulation results show that the proposed DRL-based task scheduling algorithm outperforms the existing methods in the literature in terms of the average task satisfaction degree and success ratio.

Author(s):  
Shailendra Raghuvanshi ◽  
Priyanka Dubey

Load balancing of non-preemptive independent tasks on virtual machines (VMs) is an important aspect of task scheduling in clouds. Whenever certain VMs are overloaded and remaining VMs are under loaded with tasks for processing, the load has to be balanced to achieve optimal machine utilization. In this paper, we propose an algorithm named honey bee behavior inspired load balancing, which aims to achieve well balanced load across virtual machines for maximizing the throughput. The proposed algorithm also balances the priorities of tasks on the machines in such a way that the amount of waiting time of the tasks in the queue is minimal. We have compared the proposed algorithm with existing load balancing and scheduling algorithms. The experimental results show that the algorithm is effective when compared with existing algorithms. Our approach illustrates that there is a significant improvement in average execution time and reduction in waiting time of tasks on queue using workflowsim simulator in JAVA.


Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 955
Author(s):  
Zhiyuan Li ◽  
Ershuai Peng

With the development of smart vehicles and various vehicular applications, Vehicular Edge Computing (VEC) paradigm has attracted from academic and industry. Compared with the cloud computing platform, VEC has several new features, such as the higher network bandwidth and the lower transmission delay. Recently, vehicular computation-intensive task offloading has become a new research field for the vehicular edge computing networks. However, dynamic network topology and the bursty computation tasks offloading, which causes to the computation load unbalancing for the VEC networking. To solve this issue, this paper proposed an optimal control-based computing task scheduling algorithm. Then, we introduce software defined networking/OpenFlow framework to build a software-defined vehicular edge networking structure. The proposed algorithm can obtain global optimum results and achieve the load-balancing by the virtue of the global load status information. Besides, the proposed algorithm has strong adaptiveness in dynamic network environments by automatic parameter tuning. Experimental results show that the proposed algorithm can effectively improve the utilization of computation resources and meet the requirements of computation and transmission delay for various vehicular tasks.


2019 ◽  
Vol 11 (7) ◽  
pp. 1826 ◽  
Author(s):  
Yuxia Cheng ◽  
Zhiwei Wu ◽  
Kui Liu ◽  
Qing Wu ◽  
Yu Wang

Task scheduling is critical for improving system performance in the distributed heterogeneous computing environment. The Directed Acyclic Graph (DAG) tasks scheduling problem is NP-complete and it is hard to find an optimal schedule. Due to its key importance, the DAG tasks scheduling problem has been extensively studied in the literature. However, many previously proposed traditional heuristic algorithms are usually based on greedy methods and also lack the consideration of scheduling tasks between trusted and untrusted entities, which makes the problem more complicated, but there still exists a large optimization space to be explored. In this paper, we propose a trust-aware adaptive DAG tasks scheduling algorithm using the reinforcement learning and Monte Carlo Tree Search (MCTS) methods. The scheduling problem is defined using the reinforcement learning model. Efficient scheduling state space, action space and reward function are designed to train the policy gradient-based REINFORCE agent. The MCTS method is proposed to determine actual scheduling policies when DAG tasks are simultaneously executed in trusted and untrusted entities. Leveraging the algorithm’s capability of exploring long term reward, the proposed algorithm could achieve good scheduling policies while guaranteeing trusted tasks scheduled within trusted entities. Experimental results showed the effectiveness of the proposed algorithm compared with the classic HEFT/CPOP algorithms.


Author(s):  
Hui Xie ◽  
Li Wei ◽  
Dong Liu ◽  
Luda Wang

Task scheduling problem of heterogeneous computing system (HCS), which with increasing popularity, nowadays has become a research hotspot in this domain. The task scheduling problem of HCS, which can be described essentially as assigning tasks to the proper processor for executing, has been shown to be NP-complete. However, the existing scheduling algorithm suffers from an inherent limitation of lacking global view. Here, we reported a novel task scheduling algorithm based on Multi-Logistic Regression theory (called MLRS) in heterogeneous computing environment. First, we collected the best scheduling plans as the historical training set, and then a scheduling model was established by which we could predict the following schedule action. Through the analysis of experimental results, it is interpreted that the proposed algorithm has better optimization effect and robustness.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Binbin Huang ◽  
Yuanyuan Xiang ◽  
Dongjin Yu ◽  
Jiaojiao Wang ◽  
Zhongjin Li ◽  
...  

Mobile edge computing as a novel computing paradigm brings remote cloud resource to the edge servers nearby mobile users. Within one-hop communication range of mobile users, a number of edge servers equipped with enormous computation and storage resources are deployed. Mobile users can offload their partial or all computation tasks of a workflow application to the edge servers, thereby significantly reducing the completion time of the workflow application. However, due to the open nature of mobile edge computing environment, these tasks, offloaded to the edge servers, are susceptible to be intentionally overheard or tampered by malicious attackers. In addition, the edge computing environment is dynamical and time-variant, which results in the fact that the existing quasistatic workflow application scheduling scheme cannot be applied to the workflow scheduling problem in dynamical mobile edge computing with malicious attacks. To address these two problems, this paper formulates the workflow scheduling problem with risk probability constraint in the dynamic edge computing environment with malicious attacks to be a Markov Decision Process (MDP). To solve this problem, this paper designs a reinforcement learning-based security-aware workflow scheduling (SAWS) scheme. To demonstrate the effectiveness of our proposed SAWS scheme, this paper compares SAWS with MSAWS, AWM, Greedy, and HEFT baseline algorithms in terms of different performance parameters including risk probability, security service, and risk coefficient. The extensive experiments results show that, compared with the four baseline algorithms in workflows of different scales, the SAWS strategy can achieve better execution efficiency while satisfying the risk probability constraints.


2019 ◽  
Vol 2019 ◽  
pp. 1-20 ◽  
Author(s):  
Binbin Huang ◽  
Yangyang Li ◽  
Zhongjin Li ◽  
Linxuan Pan ◽  
Shangguang Wang ◽  
...  

With the explosive growth of mobile applications, mobile devices need to be equipped with abundant resources to process massive and complex mobile applications. However, mobile devices are usually resource-constrained due to their physical size. Fortunately, mobile edge computing, which enables mobile devices to offload computation tasks to edge servers with abundant computing resources, can significantly meet the ever-increasing computation demands from mobile applications. Nevertheless, offloading tasks to the edge servers are liable to suffer from external security threats (e.g., snooping and alteration). Aiming at this problem, we propose a security and cost-aware computation offloading (SCACO) strategy for mobile users in mobile edge computing environment, the goal of which is to minimize the overall cost (including mobile device’s energy consumption, processing delay, and task loss probability) under the risk probability constraints. Specifically, we first formulate the computation offloading problem as a Markov decision process (MDP). Then, based on the popular deep reinforcement learning approach, deep Q-network (DQN), the optimal offloading policy for the proposed problem is derived. Finally, extensive experimental results demonstrate that SCACO can achieve the security and cost efficiency for the mobile user in the mobile edge computing environment.


Sign in / Sign up

Export Citation Format

Share Document