scholarly journals Application of Magnetic Sensor for Magnetic Profile (1D) and Surface (2D) Measurement of Automotive Wheels

Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2475
Author(s):  
Sebastian Brol

This paper shows a report of over three years of intensive work on application of a 3-axis anisotropic magnetoresistive sensor with I2C interface for measurement of magnetic flux density distribution of automotive wheels. The work was undertaken to answer the question of whether is a possibility to effectively apply low-cost magnetic sensors with serial interface to measure the magnetic field surrounding the automotive wheel or tire. Two measurement techniques were discussed: Magnetic profile (1D) and magnetic surface measurement (2D) over tread, and also gear associated with the sensor, as well as its design, layout, operation, and control technique during (1D) and (2D) measurements. Three experiments were performed to asses accuracy and repeatability concerning component and resultant magnetic circumferential profiles and also magnetic surface. Differences between measurement outcomes in experiment were assessed. The results show that accuracy and repeatability lays below maximum admissible uncertainty declared by the producer. This proves directly that there is no measurable influence of motors, gear, operation, or measurement procedure on results obtained by magnetic sensors, and indirectly, that the assumed requirements regarding gear design and parameters are correct, and measurement of magnetic flux density distribution of automotive wheels and tires using (1D) and (2D) techniques is possible using a 3-axis anisotropic magnetoresistive sensor with I2C interface.

Author(s):  
Eunho Choe ◽  
Hoyong Lee ◽  
Jinyi Lee

Abstract Liquid penetrant testing (PT), magnetic particle testing (MT) and ultrasonic testing (UT) have been used as nondestructive testing methods for the welded tubular joints of reactor cooling systems. The PT and the MT that are applied to the surface test of the specimen have been experiencing problems such as specimen contamination, hazardous chemical exposure risk for the inspector, and the inspector’s extended time in the nuclear power plant due to the long testing time (increased risk of radiation exposure). This study is about the applicability of an alternative nondestructive examination (ANDE) method to solve the aforementioned problems. According to the requirements of ANDE, the NDE technology should be applied with the same or better sensitivity and shorter inspection time than the conventional inspection methods of PT and MT. In order to satisfy these requirements, a flexible-type multi-sensor array was developed in order to scan a certain welding area and complete the inspection in a short time. The static and time-varying magnetic fields were applied to the test specimen and the magnetic flux density distribution was measured by solid state magnetic sensors. Each sensor is arranged with a spatial resolution of less than 2 mm, and the shape can be varied according to the shape of the bead. By using the measured data, the magnetic flux density distribution according to the presence or absence of defects and shapes can be visualized in real time, and stored into the database.


Sign in / Sign up

Export Citation Format

Share Document